AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Rice LM
  • References

Author: Rice LM


References 22 references


No citations for this author.

Download References (.nbib)

  • Macaluso F, et al. (2025) Evolutionary adaptation to hyperstable microtubules selectively targets tubulins and is empowered by the spindle assembly checkpoint. Cell Rep 44(2):115323 PMID:39955777
    • SGD Paper
    • DOI full text
    • PubMed
  • Miller MP, et al. (2019) Kinetochore-associated Stu2 promotes chromosome biorientation in vivo. PLoS Genet 15(10):e1008423 PMID:31584935
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geyer EA, et al. (2018) Design principles of a microtubule polymerase. Elife 7 PMID:29897335
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Howes SC, et al. (2018) Structural and functional differences between porcine brain and budding yeast microtubules. Cell Cycle 17(3):278-287 PMID:29278985
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Majumdar S, et al. (2018) An isolated CLASP TOG domain suppresses microtubule catastrophe and promotes rescue. Mol Biol Cell 29(11):1359-1375 PMID:29851564
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arellano-Santoyo H, et al. (2017) A Tubulin Binding Switch Underlies Kip3/Kinesin-8 Depolymerase Activity. Dev Cell 42(1):37-51.e8 PMID:28697331
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Driver JW, et al. (2017) Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips. Elife 6 PMID:28628007
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Howes SC, et al. (2017) Structural differences between yeast and mammalian microtubules revealed by cryo-EM. J Cell Biol 216(9):2669-2677 PMID:28652389
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geyer EA, et al. (2015) A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics. Elife 4:e10113 PMID:26439009
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ayaz P, et al. (2014) A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. Elife 3:e03069 PMID:25097237
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ayaz P, et al. (2012) A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science 337(6096):857-60 PMID:22904013
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson V, et al. (2011) Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants. Biochemistry 50(40):8636-44 PMID:21888381
    • SGD Paper
    • DOI full text
    • PubMed
  • Nolt JK, et al. (2011) PP2A (Cdc)⁵⁵ is required for multiple events during meiosis I. Cell Cycle 10(9):1420-34 PMID:21455032
    • SGD Paper
    • DOI full text
    • PubMed
  • Morgan J, et al. (2009) Altering sphingolipid metabolism in Saccharomyces cerevisiae cells lacking the amphiphysin ortholog Rvs161 reinitiates sugar transporter endocytosis. Eukaryot Cell 8(5):779-89 PMID:19286982
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kollman JM, et al. (2008) The structure of the gamma-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol Biol Cell 19(1):207-15 PMID:17978090
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krukenberg KA, et al. (2008) Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16(5):755-65 PMID:18462680
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rice LM, et al. (2005) Loss of meiotic rereplication block in Saccharomyces cerevisiae cells defective in Cdc28p regulation. Eukaryot Cell 4(1):55-62 PMID:15643060
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fiebig KM, et al. (1999) Folding intermediates of SNARE complex assembly. Nat Struct Biol 6(2):117-23 PMID:10048921
    • SGD Paper
    • DOI full text
    • PubMed
  • Rice LM and Brunger AT (1999) Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly. Mol Cell 4(1):85-95 PMID:10445030
    • SGD Paper
    • DOI full text
    • PubMed
  • Rice LM, et al. (1997) Formation of a yeast SNARE complex is accompanied by significant structural changes. FEBS Lett 415(1):49-55 PMID:9326367
    • SGD Paper
    • DOI full text
    • PubMed
  • Rossi G, et al. (1997) Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9. J Biol Chem 272(26):16610-7 PMID:9195974
    • SGD Paper
    • DOI full text
    • PubMed
  • Shamoo Y, et al. (1997) Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 A resolution. Nat Struct Biol 4(3):215-22 PMID:9164463
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top