AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Ravid T
  • References

Author: Ravid T


References 26 references


No citations for this author.

Download References (.nbib)

  • Radzinski M, et al. (2025) Cdc48 plays a crucial role in redox homeostasis through dynamic reshaping of its interactome during early stationary phase. Redox Biol 84:103651 PMID:40359616
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Abildgaard AB, et al. (2023) HSP70-binding motifs function as protein quality control degrons. Cell Mol Life Sci 80(1):32 PMID:36609589
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johansson KE, et al. (2023) Prediction of Quality-control Degradation Signals in Yeast Proteins. J Mol Biol 435(2):167915 PMID:36495918
    • SGD Paper
    • DOI full text
    • PubMed
  • Mashahreh B, et al. (2023) yGPS-P: A Yeast-Based Peptidome Screen for Studying Quality Control-Associated Proteolysis. Biomolecules 13(6) PMID:37371568
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oppenheim T, et al. (2023) The Cdc48 N-terminal domain has a molecular switch that mediates the Npl4-Ufd1-Cdc48 complex formation. Structure 31(7):764-779.e8 PMID:37311459
    • SGD Paper
    • DOI full text
    • PubMed
  • David Y, et al. (2022) Pls1 Is a Peroxisomal Matrix Protein with a Role in Regulating Lysine Biosynthesis. Cells 11(9) PMID:35563734
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mashahreh B, et al. (2022) Conserved degronome features governing quality control associated proteolysis. Nat Commun 13(1):7588 PMID:36481666
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clausen L, et al. (2020) Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation. PLoS Genet 16(11):e1009187 PMID:33137092
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones RD, et al. (2020) The extent of Ssa1/Ssa2 Hsp70 chaperone involvement in nuclear protein quality control degradation varies with the substrate. Mol Biol Cell 31(3):221-233 PMID:31825716
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mashahreh B, et al. (2019) Assays for dissecting the in vitro enzymatic activity of yeast Ubc7. Methods Enzymol 619:71-95 PMID:30910030
    • SGD Paper
    • DOI full text
    • PubMed
  • Gardner RG and Ravid T (2018) From Precise Slicing to General SHREDding: The Ubiquitin Ligase Ubr1 Roqs as a Multipurpose Protein Terminator. Mol Cell 70(6):989-990 PMID:29932909
    • SGD Paper
    • DOI full text
    • PubMed
  • Geffen Y, et al. (2018) Integrated Proteogenomic Approach for Identifying Degradation Motifs in Eukaryotic Cells. Methods Mol Biol 1844:121-136 PMID:30242707
    • SGD Paper
    • DOI full text
    • PubMed
  • Radzinski M, et al. (2018) Temporal profiling of redox-dependent heterogeneity in single cells. Elife 7 PMID:29869985
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geffen Y, et al. (2016) Mapping the Landscape of a Eukaryotic Degronome. Mol Cell 63(6):1055-65 PMID:27618491
    • SGD Paper
    • DOI full text
    • PubMed
  • Weber A, et al. (2016) Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands the Versatility of a Quality Control Ubiquitin Ligase. Mol Cell 63(5):827-39 PMID:27570077
    • SGD Paper
    • DOI full text
    • PubMed
  • Cohen I, et al. (2015) Distinct activation of an E2 ubiquitin-conjugating enzyme by its cognate E3 ligases. Proc Natl Acad Sci U S A 112(7):E625-32 PMID:25646477
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sajman J, et al. (2015) Degradation of Ndd1 by APC/C(Cdh1) generates a feed forward loop that times mitotic protein accumulation. Nat Commun 6:7075 PMID:25959309
    • SGD Paper
    • DOI full text
    • PubMed
  • Cohen I, et al. (2014) Reporter-based growth assay for systematic analysis of protein degradation. J Vis Exp e52021 PMID:25406949
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shiber A, et al. (2014) Flow cytometric quantification and characterization of intracellular protein aggregates in yeast. Prion 8(3):276-84 PMID:25482598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alfassy OS, et al. (2013) Placing a disrupted degradation motif at the C terminus of proteasome substrates attenuates degradation without impairing ubiquitylation. J Biol Chem 288(18):12645-53 PMID:23519465
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shiber A, et al. (2013) Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Mol Biol Cell 24(13):2076-87 PMID:23637465
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shteingart S, et al. (2012) Endoplasmic reticulum stress induces a caspase-dependent N-terminal cleavage of RBX1 protein in B cells. J Biol Chem 287(37):31223-32 PMID:22822056
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Furth N, et al. (2011) Exposure of bipartite hydrophobic signal triggers nuclear quality control of Ndc10 at the endoplasmic reticulum/nuclear envelope. Mol Biol Cell 22(24):4726-39 PMID:21998200
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hochstrasser M, et al. (2008) Molecular genetics of the ubiquitin-proteasome system: lessons from yeast. Ernst Schering Found Symp Proc 41-66 PMID:19198063
    • SGD Paper
    • DOI full text
    • PubMed
  • Ravid T and Hochstrasser M (2007) Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat Cell Biol 9(4):422-7 PMID:17310239
    • SGD Paper
    • DOI full text
    • PubMed
  • Ravid T, et al. (2006) Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J 25(3):533-43 PMID:16437165
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top