AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Perlman PS
  • References

Author: Perlman PS


References 60 references


No citations for this author.

Download References (.nbib)

  • Mohr S, et al. (2006) A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Proc Natl Acad Sci U S A 103(10):3569-74 PMID:16505350
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang HR, et al. (2005) The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc Natl Acad Sci U S A 102(1):163-8 PMID:15618406
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dickson L, et al. (2004) Abortive transposition by a group II intron in yeast mitochondria. Genetics 168(1):77-87 PMID:15454528
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Perlman PS and Boeke JD (2004) Molecular biology. Ring around the retroelement. Science 303(5655):182-4 PMID:14716001
    • SGD Paper
    • DOI full text
    • PubMed
  • Huang HR, et al. (2003) The DIVa maturase binding site in the yeast group II intron aI2 is essential for intron homing but not for in vivo splicing. Mol Cell Biol 23(23):8809-19 PMID:14612420
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaufman BA, et al. (2003) A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. J Cell Biol 163(3):457-61 PMID:14597775
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bateman JM, et al. (2002) Mutational bisection of the mitochondrial DNA stability and amino acid biosynthetic functions of ilv5p of budding yeast. Genetics 161(3):1043-52 PMID:12136009
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bateman JM, et al. (2002) Mitochondrial DNA instability mutants of the bifunctional protein Ilv5p have altered organization in mitochondria and are targeted for degradation by Hsp78 and the Pim1p protease. J Biol Chem 277(49):47946-53 PMID:12381727
    • SGD Paper
    • DOI full text
    • PubMed
  • Dickson L, et al. (2001) Retrotransposition of a yeast group II intron occurs by reverse splicing directly into ectopic DNA sites. Proc Natl Acad Sci U S A 98(23):13207-12 PMID:11687644
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • MacAlpine DM, et al. (2001) Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA. EMBO J 20(7):1807-17 PMID:11285243
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eskes R, et al. (2000) Multiple homing pathways used by yeast mitochondrial group II introns. Mol Cell Biol 20(22):8432-46 PMID:11046140
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaufman BA, et al. (2000) In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc Natl Acad Sci U S A 97(14):7772-7 PMID:10869431
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • MacAlpine DM, et al. (2000) The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J 19(4):767-75 PMID:10675346
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Y, et al. (2000) Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae. RNA 6(7):937-51 PMID:10917591
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zimmerly S, et al. (1999) Group II intron reverse transcriptase in yeast mitochondria. Stabilization and regulation of reverse transcriptase activity by the intron RNA. J Mol Biol 289(3):473-90 PMID:10356323
    • SGD Paper
    • DOI full text
    • PubMed
  • MacAlpine DM, et al. (1998) The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo. Proc Natl Acad Sci U S A 95(12):6739-43 PMID:9618482
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Okamoto K, et al. (1998) The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J Cell Biol 142(3):613-23 PMID:9700153
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schmidt U, et al. (1998) Mutant alleles of the MRS2 gene of yeast nuclear DNA suppress mutations in the catalytic core of a mitochondrial group II intron. J Mol Biol 282(3):525-41 PMID:9737920
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang J, et al. (1998) Group II intron mobility in yeast mitochondria: target DNA-primed reverse transcription activity of aI1 and reverse splicing into DNA transposition sites in vitro. J Mol Biol 282(3):505-23 PMID:9737919
    • SGD Paper
    • DOI full text
    • PubMed
  • Zelenaya-Troitskaya O, et al. (1998) Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 148(4):1763-76 PMID:9581629
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eskes R, et al. (1997) Mobility of yeast mitochondrial group II introns: engineering a new site specificity and retrohoming via full reverse splicing. Cell 88(6):865-74 PMID:9118229
    • SGD Paper
    • DOI full text
    • PubMed
  • Guo H, et al. (1997) Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA. EMBO J 16(22):6835-48 PMID:9362497
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boulanger SC, et al. (1996) Length changes in the joining segment between domains 5 and 6 of a group II intron inhibit self-splicing and alter 3' splice site selection. Mol Cell Biol 16(10):5896-904 PMID:8816503
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Newman SM, et al. (1996) Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG box protein Abf2p. Nucleic Acids Res 24(2):386-93 PMID:8628667
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang J, et al. (1996) Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature 381(6580):332-5 PMID:8692273
    • SGD Paper
    • DOI full text
    • PubMed
  • Boulanger SC, et al. (1995) Studies of point mutants define three essential paired nucleotides in the domain 5 substructure of a group II intron. Mol Cell Biol 15(8):4479-88 PMID:7623838
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guo WW, et al. (1995) The mobile group I intron 3 alpha of the yeast mitochondrial COXI gene encodes a 35-kDa processed protein that is an endonuclease but not a maturase. J Biol Chem 270(26):15563-70 PMID:7797552
    • SGD Paper
    • DOI full text
    • PubMed
  • Henke RM, et al. (1995) Maturase and endonuclease functions depend on separate conserved domains of the bifunctional protein encoded by the group I intron aI4 alpha of yeast mitochondrial DNA. EMBO J 14(20):5094-9 PMID:7588637
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moran JV, et al. (1995) Mobile group II introns of yeast mitochondrial DNA are novel site-specific retroelements. Mol Cell Biol 15(5):2828-38 PMID:7537853
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Podar M, et al. (1995) Stereochemical selectivity of group II intron splicing, reverse splicing, and hydrolysis reactions. Mol Cell Biol 15(8):4466-78 PMID:7542746
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zelenaya-Troitskaya O, et al. (1995) An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability. EMBO J 14(13):3268-76 PMID:7621838
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zimmerly S, et al. (1995) A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83(4):529-38 PMID:7585955
    • SGD Paper
    • DOI full text
    • PubMed
  • Zimmerly S, et al. (1995) Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82(4):545-54 PMID:7664334
    • SGD Paper
    • DOI full text
    • PubMed
  • Kennell JC, et al. (1993) Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73(1):133-46 PMID:7681727
    • SGD Paper
    • DOI full text
    • PubMed
  • Moran JV, et al. (1992) Intron 5 alpha of the COXI gene of yeast mitochondrial DNA is a mobile group I intron. Nucleic Acids Res 20(15):4069-76 PMID:1324475
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wernette C, et al. (1992) Complex recognition site for the group I intron-encoded endonuclease I-SceII. Mol Cell Biol 12(2):716-23 PMID:1732740
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Anziano PQ, et al. (1990) Novel hybrid maturases in unstable pseudorevertants of maturaseless mutants of yeast mitochondrial DNA. Nucleic Acids Res 18(11):3233-9 PMID:1972561
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Conrad-Webb H, et al. (1990) The nuclear SUV3-1 mutation affects a variety of post-transcriptional processes in yeast mitochondria. Nucleic Acids Res 18(6):1369-76 PMID:2158076
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wenzlau JM and Perlman PS (1990) Mobility of two optional G + C-rich clusters of the var1 gene of yeast mitochondrial DNA. Genetics 126(1):53-62 PMID:2227389
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wernette CM, et al. (1990) Purification of a site-specific endonuclease, I-Sce II, encoded by intron 4 alpha of the mitochondrial coxI gene of Saccharomyces cerevisiae. J Biol Chem 265(31):18976-82 PMID:2172241
    • SGD Paper
    • PubMed
  • Wenzlau JM, et al. (1989) A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell 56(3):421-30 PMID:2536592
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu H, et al. (1989) Functional expression of a yeast mitochondrial intron-encoded protein requires RNA processing at a conserved dodecamer sequence at the 3' end of the gene. Mol Cell Biol 9(4):1507-12 PMID:2657398
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jarrell KA, et al. (1988) Group II intron self-splicing. Alternative reaction conditions yield novel products. J Biol Chem 263(7):3432-9 PMID:2830285
    • SGD Paper
    • PubMed
  • Zinn AR, et al. (1988) In vivo double-strand breaks occur at recombinogenic G + C-rich sequences in the yeast mitochondrial genome. Proc Natl Acad Sci U S A 85(8):2686-90 PMID:3282235
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zinn AR, et al. (1987) Kinetic and segregational analysis of mitochondrial DNA recombination in yeast. Plasmid 17(3):248-56 PMID:3306735
    • SGD Paper
    • DOI full text
    • PubMed
  • Peebles CL, et al. (1986) A self-splicing RNA excises an intron lariat. Cell 44(2):213-23 PMID:3510741
    • SGD Paper
    • DOI full text
    • PubMed
  • Butow RA, et al. (1985) The unusual varl gene of yeast mitochondrial DNA. Science 228(4707):1496-501 PMID:2990030
    • SGD Paper
    • DOI full text
    • PubMed
  • Hudspeth ME, et al. (1984) Expandable var1 gene of yeast mitochondrial DNA: in-frame insertions can explain the strain-specific protein size polymorphisms. Proc Natl Acad Sci U S A 81(10):3148-52 PMID:6328501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lamb MR, et al. (1983) Functional domains in introns. RNA processing intermediates in cis- and trans-acting mutants in the penultimate intron of the mitochondrial gene for cytochrome b. J Biol Chem 258(3):1991-9 PMID:6296117
    • SGD Paper
    • PubMed
  • Anziano PQ, et al. (1982) Functional domains in introns: trans-acting and cis-acting regions of intron 4 of the cob gene. Cell 30(3):925-32 PMID:6754094
    • SGD Paper
    • DOI full text
    • PubMed
  • Hanson DK, et al. (1982) Evidence for translated intervening sequences in the mitochondrial genome of Saccharomyces cerevisiae. J Biol Chem 257(6):3218-24 PMID:6277926
    • SGD Paper
    • PubMed
  • Zassenhaus HP and Perlman PS (1982) Respiration deficient mutants in the A+T-rich region on yeast mitochondrial DNA containing the var1 gene. Curr Genet 6(3):179-88 PMID:24186543
    • SGD Paper
    • DOI full text
    • PubMed
  • Dhawale S, et al. (1981) Regulatory interactions between mitochondrial genes: interactions between two mosaic genes. Proc Natl Acad Sci U S A 78(3):1778-82 PMID:6262825
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vincent RD, et al. (1980) Physical mapping of genetic determinants on yeast mitochondrial DNA affecting the apparent size of the Var 1 polypeptide. Curr Genet 2(1):27-38 PMID:24189720
    • SGD Paper
    • DOI full text
    • PubMed
  • Alexander NJ, et al. (1979) Regulatory interactions between mitochondrial genes. I. Genetic and biochemical characterization of some mutant types affecting apocytochrome b and cytochrome oxidase. J Biol Chem 254(7):2471-9 PMID:218939
    • SGD Paper
    • PubMed
  • Hanson DK, et al. (1979) Regulatory interaction between mitochondrial genes. II. Detailed characterization of novel mutants mapping within one cluster in the cob2 region. J Biol Chem 254(7):2480-90 PMID:218940
    • SGD Paper
    • PubMed
  • Birky CW, et al. (1978) Uniparental inheritance of mitochondrial genes in yeast: dependence on input bias of mitochondrial DNA and preliminary investigations of the mechanism. Genetics 89(4):615-51 PMID:357245
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Perlman PS (1976) Genetic analysis of petite mutants of Saccharomyces cerevisiae: transmissional types. Genetics 82(4):645-63 PMID:773749
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Young RA and Perlman PS (1975) "Killer" character does not influence the transmission of mitochondrial genes in Saccharomyces cerevisiae. J Bacteriol 124(1):290-5 PMID:1100604
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Perlman PS and Mahler HR (1970) Intracellular localization of enzymes in yeast. Arch Biochem Biophys 136(1):245-59 PMID:4391967
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top