Miyazaki T, et al. (2025) Mechanisms of multidrug resistance caused by an Ipi1 mutation in the fungal pathogen Candida glabrata. Nat Commun 16(1):1023 PMID:39863615
Prima A, et al. (2017) Glutathione production from mannan-based bioresource by mannanase/mannosidase expressing Saccharomyces cerevisiae. Bioresour Technol 245(Pt B):1400-1406 PMID:28624243
Nagi M, et al. (2016) Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata. Autophagy 12(8):1259-71 PMID:27347716
Taoka M, et al. (2016) The complete chemical structure of Saccharomyces cerevisiae rRNA: partial pseudouridylation of U2345 in 25S rRNA by snoRNA snR9. Nucleic Acids Res 44(18):8951-8961 PMID:27325748
Inukai T, et al. (2015) The mannoprotein TIR3 (CAGL0C03872g) is required for sterol uptake in Candida glabrata. Biochim Biophys Acta 1851(2):141-51 PMID:25463012
Murakawa T, et al. (2015) Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6:7527 PMID:26146385
Aoyama T, et al. (2014) Genome-wide survey of transcriptional initiation in the pathogenic fungus, Candida glabrata. Genes Cells 19(6):478-503 PMID:24725256
Costa C, et al. (2014) Candida glabrata drug:H+ antiporter CgTpo3 (ORF CAGL0I10384g): role in azole drug resistance and polyamine homeostasis. J Antimicrob Chemother 69(7):1767-76 PMID:24576949
Hara KY, et al. (2012) Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 94(5):1313-9 PMID:22234534
Nagao J, et al. (2012) Candida albicans Msi3p, a homolog of the Saccharomyces cerevisiae Sse1p of the Hsp70 family, is involved in cell growth and fluconazole tolerance. FEMS Yeast Res 12(6):728-37 PMID:22713118
Yoshida H, et al. (2011) Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst. Appl Microbiol Biotechnol 91(4):1001-6 PMID:21573687
Iguchi Y, et al. (2010) Control of signalling properties of human somatostatin receptor subtype-5 by additional signal sequences on its amino-terminus in yeast. J Biochem 147(6):875-84 PMID:20207822
Taoka M, et al. (2010) In-gel digestion for mass spectrometric characterization of RNA from fluorescently stained polyacrylamide gels. Anal Chem 82(18):7795-803 PMID:20795640
Makise M, et al. (2009) Linkage between phosphorylation of the origin recognition complex and its ATP binding activity in Saccharomyces cerevisiae. J Biol Chem 284(6):3396-407 PMID:19068484
Nakayama H, et al. (2009) Ariadne: a database search engine for identification and chemical analysis of RNA using tandem mass spectrometry data. Nucleic Acids Res 37(6):e47 PMID:19270066
Taoka M, et al. (2009) An analytical platform for mass spectrometry-based identification and chemical analysis of RNA in ribonucleoprotein complexes. Nucleic Acids Res 37(21):e140 PMID:19740761
Nakayama H, et al. (2007) The Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the presence of serum. J Antimicrob Chemother 60(6):1264-72 PMID:17913716
Miyakawa Y, et al. (2006) [Essential genes as potential targets of antifungal agents in pathogenic yeast Candida]. Nihon Ishinkin Gakkai Zasshi 47(4):269-74 PMID:17086158
Chibana H, et al. (2005) Sequence finishing and gene mapping for Candida albicans chromosome 7 and syntenic analysis against the Saccharomyces cerevisiae genome. Genetics 170(4):1525-37 PMID:15937140
Nakayama H, et al. (2001) In vitro and in vivo effects of 14alpha-demethylase (ERG11) depletion in Candida glabrata. Antimicrob Agents Chemother 45(11):3037-45 PMID:11600353
Nakayama H, et al. (2000) Depletion of the squalene synthase (ERG9) gene does not impair growth of Candida glabrata in mice. Antimicrob Agents Chemother 44(9):2411-8 PMID:10952588
Nakayama H, et al. (1998) A controllable gene-expression system for the pathogenic fungus Candida glabrata. Microbiology (Reading) 144 ( Pt 9):2407-2415 PMID:9782488
Ishii N, et al. (1997) A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of C. albicans. Microbiology (Reading) 143 ( Pt 2):417-427 PMID:9043119