AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Murakami K
  • References

Author: Murakami K


References 48 references


No citations for this author.

Download References (.nbib)

  • Kim HJ, et al. (2024) Structure of the Hir histone chaperone complex. Mol Cell 84(14):2601-2617.e12 PMID:38925115
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang C, et al. (2024) Transcription start site scanning requires the fungi-specific hydrophobic loop of Tfb3. Nucleic Acids Res 52(19):11602-11611 PMID:39287137
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gorbea Colón JJ, et al. (2023) Structural basis of a transcription pre-initiation complex on a divergent promoter. Mol Cell 83(4):574-588.e11 PMID:36731470
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gorbea Colon JJ, et al. (2022) Structure of Saccharomyces cerevisiae Mediator-RNA polymerase II pre-initiation complex for divergent transcription. FASEB J 36 Suppl 1.
    • SGD Paper
    • DOI full text
  • Murakami K and Yoshino M (2022) Prooxidant activity of aminophenol compounds: copper-dependent generation of reactive oxygen species. Biometals 35(2):329-334 PMID:35157172
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang C, et al. (2022) Structural visualization of de novo transcription initiation by Saccharomyces cerevisiae RNA polymerase II. Mol Cell 82(3):660-676.e9 PMID:35051353
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li YC, et al. (2021) Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. Sci Adv 7(3) PMID:33523904
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Eeuwen T, et al. (2021) Structure of TFIIK for phosphorylation of CTD of RNA polymerase II. Sci Adv 7(15) PMID:33827808
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Eeuwen T, et al. (2021) Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair. Nat Commun 12(1):3338 PMID:34099686
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami K and Yoshino M (2020) Generation of reactive oxygen species by hydroxypyridone compound/iron complexes. Redox Rep 25(1):59-63 PMID:32615878
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fujiwara R and Murakami K (2019) In vitro reconstitution of yeast RNA polymerase II transcription initiation with high efficiency. Methods 159-160:82-89 PMID:30905750
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fujiwara R, et al. (2019) The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation. Proc Natl Acad Sci U S A 116(45):22573-22582 PMID:31591205
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Damodaren N, et al. (2017) Def1 interacts with TFIIH and modulates RNA polymerase II transcription. Proc Natl Acad Sci U S A 114(50):13230-13235 PMID:29180430
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fazal FM, et al. (2015) Real-time observation of the initiation of RNA polymerase II transcription. Nature 525(7568):274-7 PMID:26331540
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami K and Yoshino M (2015) Effect of fructose 1,6-bisphosphate on the iron redox state relating to the generation of reactive oxygen species. Biometals 28(4):687-91 PMID:25940829
    • SGD Paper
    • DOI full text
    • PubMed
  • Murakami K, et al. (2015) Structure of an RNA polymerase II preinitiation complex. Proc Natl Acad Sci U S A 112(44):13543-8 PMID:26483468
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami K, et al. (2015) Uncoupling Promoter Opening from Start-Site Scanning. Mol Cell 59(1):133-8 PMID:26073544
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fujii T, et al. (2014) Bench-scale bioethanol production from eucalyptus by high solid saccharification and glucose/xylose fermentation method. Bioprocess Biosyst Eng 37(4):749-54 PMID:23917411
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami K, et al. (2014) Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase. Biometals 27(3):551-8 PMID:24671306
    • SGD Paper
    • DOI full text
    • PubMed
  • Pai DA, et al. (2014) RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template. RNA 20(5):644-55 PMID:24614752
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schweikhard V, et al. (2014) Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms. Proc Natl Acad Sci U S A 111(18):6642-7 PMID:24733897
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fujii T, et al. (2013) Comparison of the performance of eight recombinant strains of xylose-fermenting Saccharomyces cerevisiae as to bioethanol production from rice straw enzymatic hydrolyzate. Biosci Biotechnol Biochem 77(7):1579-82 PMID:23832338
    • SGD Paper
    • DOI full text
    • PubMed
  • Murakami K, et al. (2013) Architecture of an RNA polymerase II transcription pre-initiation complex. Science 342(6159):1238724 PMID:24072820
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami K, et al. (2013) Formation and fate of a complete 31-protein RNA polymerase II transcription preinitiation complex. J Biol Chem 288(9):6325-32 PMID:23303183
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gibbons BJ, et al. (2012) Subunit architecture of general transcription factor TFIIH. Proc Natl Acad Sci U S A 109(6):1949-54 PMID:22308316
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami K, et al. (2012) Tfb6, a previously unidentified subunit of the general transcription factor TFIIH, facilitates dissociation of Ssl2 helicase after transcription initiation. Proc Natl Acad Sci U S A 109(13):4816-21 PMID:22411836
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fujii T, et al. (2011) Ethanol production from xylo-oligosaccharides by xylose-fermenting Saccharomyces cerevisiae expressing β-xylosidase. Biosci Biotechnol Biochem 75(6):1140-6 PMID:21670522
    • SGD Paper
    • DOI full text
    • PubMed
  • Matsushika A, et al. (2009) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 100(8):2392-8 PMID:19128960
    • SGD Paper
    • DOI full text
    • PubMed
  • Matsushika A, et al. (2008) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81(2):243-55 PMID:18751695
    • SGD Paper
    • DOI full text
    • PubMed
  • Sugiyama M, et al. (2008) PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae. Appl Microbiol Biotechnol 80(3):545-53 PMID:18677473
    • SGD Paper
    • DOI full text
    • PubMed
  • Murakami K, et al. (2007) Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol 75(3):589-97 PMID:17345083
    • SGD Paper
    • DOI full text
    • PubMed
  • Murakami K, et al. (2006) Prooxidant action of rhodizonic acid: transition metal-dependent generation of reactive oxygen species causing the formation of 8-hydroxy-2'-deoxyguanosine formation in DNA. Toxicol In Vitro 20(6):910-4 PMID:16504460
    • SGD Paper
    • DOI full text
    • PubMed
  • Murakami K, et al. (2006) Prooxidant action of xanthurenic acid and quinoline compounds: role of transition metals in the generation of reactive oxygen species and enhanced formation of 8-hydroxy-2'-deoxyguanosine in DNA. Biometals 19(4):429-35 PMID:16841252
    • SGD Paper
    • DOI full text
    • PubMed
  • Murakami K, et al. (2005) Prooxidant action of hinokitiol: hinokitiol-iron dependent generation of reactive oxygen species. Basic Clin Pharmacol Toxicol 97(6):392-4 PMID:16364055
    • SGD Paper
    • DOI full text
    • PubMed
  • Noguchi M, et al. (2005) ATPase activity of p97/valosin-containing protein is regulated by oxidative modification of the evolutionally conserved cysteine 522 residue in Walker A motif. J Biol Chem 280(50):41332-41 PMID:16234241
    • SGD Paper
    • DOI full text
    • PubMed
  • Yamauchi T, et al. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(6941):762-9 PMID:12802337
    • SGD Paper
    • DOI full text
    • PubMed
  • Campbell EA, et al. (2001) Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 104(6):901-12 PMID:11290327
    • SGD Paper
    • DOI full text
    • PubMed
  • Shin HW, et al. (1997) Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J Biochem 122(3):525-30 PMID:9348079
    • SGD Paper
    • DOI full text
    • PubMed
  • Dealwis CG, et al. (1994) X-ray analysis at 2.0 A resolution of mouse submaxillary renin complexed with a decapeptide inhibitor CH-66, based on the 4-16 fragment of rat angiotensinogen. J Mol Biol 236(1):342-60 PMID:8107115
    • SGD Paper
    • DOI full text
    • PubMed
  • Nakayama K, et al. (1992) Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. Its testis-specific expression. J Biol Chem 267(9):5897-900 PMID:1372895
    • SGD Paper
    • PubMed
  • Yoshino M, et al. (1992) Inhibition by aluminum ion of NAD- and NADP-dependent isocitrate dehydrogenases from yeast. Int J Biochem 24(10):1615-8 PMID:1397488
    • SGD Paper
    • DOI full text
    • PubMed
  • Gunge N, et al. (1990) Mating type locus-dependent stability of the Kluyveromyces linear pGKL plasmids in Saccharomyces cerevisiae. Yeast 6(5):417-27 PMID:2220076
    • SGD Paper
    • DOI full text
    • PubMed
  • Hatsuzawa K, et al. (1990) Structure and expression of mouse furin, a yeast Kex2-related protease. Lack of processing of coexpressed prorenin in GH4C1 cells. J Biol Chem 265(36):22075-8 PMID:2266110
    • SGD Paper
    • PubMed
  • Kawamoto S, et al. (1987) Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver arginase. J Biol Chem 262(13):6280-3 PMID:3571256
    • SGD Paper
    • PubMed
  • Yoshino M and Murakami K (1986) Effect of temperature on the kinetics of the yeast AMP deaminase. Int J Biochem 18(3):235-9 PMID:3514303
    • SGD Paper
    • DOI full text
    • PubMed
  • Yoshino M and Murakami K (1985) AMP deaminase reaction as a control system of glycolysis in yeast. Role of ammonium ion in the interaction of phosphofructokinase and pyruvate kinase activity with the adenylate energy charge. J Biol Chem 260(8):4729-32 PMID:3157682
    • SGD Paper
    • PubMed
  • Yoshino M and Murakami K (1982) AMP deaminase reaction as a control system of glycolysis in yeast. Activation of phosphofructokinase and pyruvate kinase by the AMP deaminase-ammonia system. J Biol Chem 257(6):2822-8 PMID:6460763
    • SGD Paper
    • PubMed
  • Yoshino M and Murakami K (1982) AMP deaminase as a control system of glycolysis in yeast. Mechanism of the inhibition of glycolysis by fatty acid and citrate. J Biol Chem 257(18):10644-9 PMID:6286666
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top