AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Lis JT
  • References

Author: Lis JT


References 30 references


No citations for this author.

Download References (.nbib)

  • Booth GT, et al. (2016) Corrigendum: Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast. Genome Res 26(7):1010-1 PMID:27371223
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Booth GT, et al. (2016) Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast. Genome Res 26(6):799-811 PMID:27197211
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mahat DB, et al. (2016) Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat Protoc 11(8):1455-76 PMID:27442863
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guertin MJ and Lis JT (2013) Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Curr Opin Genet Dev 23(2):116-23 PMID:23266217
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bartkowiak B, et al. (2010) CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 24(20):2303-16 PMID:20952539
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang S, et al. (2010) Knocking down gene function with an RNA aptamer expressed as part of an intron. Nucleic Acids Res 38(15):e154 PMID:20542918
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hong SW, et al. (2009) Phosphorylation of the RNA polymerase II C-terminal domain by TFIIH kinase is not essential for transcription of Saccharomyces cerevisiae genome. Proc Natl Acad Sci U S A 106(34):14276-80 PMID:19666497
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seila AC, et al. (2009) Divergent transcription: a new feature of active promoters. Cell Cycle 8(16):2557-64 PMID:19597342
    • SGD Paper
    • DOI full text
    • PubMed
  • Sevilimedu A, et al. (2008) TFIIB aptamers inhibit transcription by perturbing PIC formation at distinct stages. Nucleic Acids Res 36(9):3118-27 PMID:18403417
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shi H, et al. (2007) RNA aptamers directed to discrete functional sites on a single protein structural domain. Proc Natl Acad Sci U S A 104(10):3742-6 PMID:17360423
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Adelman K, et al. (2006) Drosophila Paf1 modulates chromatin structure at actively transcribed genes. Mol Cell Biol 26(1):250-60 PMID:16354696
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shundrovsky A, et al. (2006) Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat Struct Mol Biol 13(6):549-54 PMID:16732285
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhao X, et al. (2006) An RNA aptamer that interferes with the DNA binding of the HSF transcription activator. Nucleic Acids Res 34(13):3755-61 PMID:16893958
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fan X, et al. (2005) Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP. Nucleic Acids Res 33(3):838-45 PMID:15701755
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim YJ and Lis JT (2005) Interactions between subunits of Drosophila Mediator and activator proteins. Trends Biochem Sci 30(5):245-9 PMID:15896742
    • SGD Paper
    • DOI full text
    • PubMed
  • Bourbon HM, et al. (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14(5):553-7 PMID:15175151
    • SGD Paper
    • DOI full text
    • PubMed
  • Fan X, et al. (2004) Probing TBP interactions in transcription initiation and reinitiation with RNA aptamers that act in distinct modes. Proc Natl Acad Sci U S A 101(18):6934-9 PMID:15103022
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guzmán E and Lis JT (1999) Transcription factor TFIIH is required for promoter melting in vivo. Mol Cell Biol 19(8):5652-8 PMID:10409754
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee DK, et al. (1999) Different upstream transcriptional activators have distinct coactivator requirements. Genes Dev 13(22):2934-9 PMID:10580000
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lin JT and Lis JT (1999) Glycogen synthase phosphatase interacts with heat shock factor to activate CUP1 gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 19(5):3237-45 PMID:10207049
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee D and Lis JT (1998) Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo. Nature 393(6683):389-92 PMID:9620805
    • SGD Paper
    • DOI full text
    • PubMed
  • Giardina C and Lis JT (1995) Sodium salicylate and yeast heat shock gene transcription. J Biol Chem 270(18):10369-72 PMID:7737966
    • SGD Paper
    • DOI full text
    • PubMed
  • Giardina C and Lis JT (1995) Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol Cell Biol 15(5):2737-44 PMID:7739554
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao H, et al. (1995) Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol Cell Biol 15(10):5757-61 PMID:7565728
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fernandes M, et al. (1994) Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions. Nucleic Acids Res 22(2):167-73 PMID:8121800
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao H, et al. (1994) A highly conserved domain of RNA polymerase II shares a functional element with acidic activation domains of upstream transcription factors. Mol Cell Biol 14(11):7507-16 PMID:7935466
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao H, et al. (1994) The upstream activator CTF/NF1 and RNA polymerase II share a common element involved in transcriptional activation. Nucleic Acids Res 22(11):1966-73 PMID:8029001
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee HS, et al. (1988) Structure and expression of ubiquitin genes of Drosophila melanogaster. Mol Cell Biol 8(11):4727-35 PMID:2463465
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Banzie JS, et al. (1986) Expression of the major heat shock gene of Drosophila melanogaster in Saccharomyces cerevisiae. Nucleic Acids Res 14(8):3587-601 PMID:3010243
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Costlow N and Lis JT (1984) High-resolution mapping of DNase I-hypersensitive sites of Drosophila heat shock genes in Drosophila melanogaster and Saccharomyces cerevisiae. Mol Cell Biol 4(9):1853-63 PMID:6436689
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top