AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Ju D
  • References

Author: Ju D


References 16 references


No citations for this author.

Download References (.nbib)

  • Ju D, et al. (2023) Homeostatic regulation of ribosomal proteins by ubiquitin-independent cotranslational degradation. Proc Natl Acad Sci U S A 120(30):e2306152120 PMID:37459537
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ha SW, et al. (2016) Rapidly Translated Polypeptides Are Preferred Substrates for Cotranslational Protein Degradation. J Biol Chem 291(18):9827-34 PMID:26961882
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ha SW, et al. (2014) Nuclear import factor Srp1 and its associated protein Sts1 couple ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation. J Biol Chem 289(5):2701-10 PMID:24338021
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ha SW, et al. (2012) The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits. Biochem Biophys Res Commun 419(2):226-31 PMID:22349505
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ju D, et al. (2010) Inhibition of proteasomal degradation of rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks. PLoS One 5(4):e9877 PMID:20376190
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ju D, et al. (2010) The transcription activation domain of Rpn4 is separate from its degrons. Int J Biochem Cell Biol 42(2):282-6 PMID:19914394
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang X, et al. (2010) Proteasomal degradation of Rpn4 in Saccharomyces cerevisiae is critical for cell viability under stressed conditions. Genetics 184(2):335-42 PMID:19933873
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ju D, et al. (2008) Genome-wide analysis identifies MYND-domain protein Mub1 as an essential factor for Rpn4 ubiquitylation. Mol Cell Biol 28(4):1404-12 PMID:18070918
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang X, et al. (2008) Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics 180(4):1945-53 PMID:18832351
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ju D, et al. (2007) The armadillo repeats of the Ufd4 ubiquitin ligase recognize ubiquitin-fusion proteins. FEBS Lett 581(2):265-70 PMID:17204268
    • SGD Paper
    • DOI full text
    • PubMed
  • Ju D, et al. (2007) Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal. Biochim Biophys Acta 1773(11):1672-80 PMID:17532487
    • SGD Paper
    • DOI full text
    • PubMed
  • Ju D and Xie Y (2006) Identification of the preferential ubiquitination site and ubiquitin-dependent degradation signal of Rpn4. J Biol Chem 281(16):10657-62 PMID:16492666
    • SGD Paper
    • DOI full text
    • PubMed
  • Ju D and Xie Y (2006) A synthetic defect in protein degradation caused by loss of Ufd4 and Rad23. Biochem Biophys Res Commun 341(2):648-52 PMID:16430867
    • SGD Paper
    • DOI full text
    • PubMed
  • Ju D and Xie Y (2004) Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and -independent. J Biol Chem 279(23):23851-4 PMID:15090546
    • SGD Paper
    • DOI full text
    • PubMed
  • Ju D, et al. (2004) Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochem Biophys Res Commun 321(1):51-7 PMID:15358214
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang L, et al. (2004) Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem 279(53):55218-23 PMID:15504724
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top