Shibata Y, et al. (2024) Effect of S-adenosyl-methionine accumulation on hineka odor in sake brewed with a non-Kyokai yeast. J Biosci Bioeng 137(4):268-273 PMID:38310037
Klinkaewboonwong N, et al. (2023) Targeted Mutations Produce Divergent Characteristics in Pedigreed Sake Yeast Strains. Microorganisms 11(5) PMID:37317248
Makimoto J, et al. (2020) Mutagenesis, breeding, and characterization of sake yeast strains with low production of dimethyl trisulfide precursor. J Biosci Bioeng 130(6):610-615 PMID:32800812
Ikeda Y, et al. (2018) Construction of sake yeast with low production of dimethyl trisulfide precursor by a self-cloning method. J Biosci Bioeng 125(4):419-424 PMID:29331527
Takao Y, et al. (2018) Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing. J Biosci Bioeng 126(5):617-623 PMID:29884321
Iizuka-Furukawa S, et al. (2017) Identification of 4-mercapto-4-methylpentan-2-one as the characteristic aroma of sake made from low-glutelin rice. J Biosci Bioeng 123(2):209-215 PMID:27773607
Wakabayashi K, et al. (2013) Involvement of methionine salvage pathway genes of Saccharomyces cerevisiae in the production of precursor compounds of dimethyl trisulfide (DMTS). J Biosci Bioeng 116(4):475-9 PMID:23773701
Horie K, et al. (2010) Breeding of a low pyruvate-producing sake yeast by isolation of a mutant resistant to ethyl alpha-transcyanocinnamate, an inhibitor of mitochondrial pyruvate transport. Biosci Biotechnol Biochem 74(4):843-7 PMID:20445321
Terwisscha van Scheltinga AC, et al. (1995) Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34(48):15619-23 PMID:7495789