AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Ikeda K
  • References

Author: Ikeda K


References 20 references


No citations for this author.

Download References (.nbib)

  • Fukuda T, et al. (2023) The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol Cell 83(12):2045-2058.e9 PMID:37192628
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugiura T, et al. (2021) Biophysical parameters of the Sec14 phospholipid exchange cycle - Effect of lipid packing in membranes. Biochim Biophys Acta Biomembr 1863(1):183450 PMID:32828847
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kawano-Kawada M, et al. (2019) A PQ-loop protein Ypq2 is involved in the exchange of arginine and histidine across the vacuolar membrane of Saccharomyces cerevisiae. Sci Rep 9(1):15018 PMID:31636363
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugiura T, et al. (2019) Biophysical Parameters of the Sec14 Phospholipid Exchange Cycle. Biophys J 116(1):92-103 PMID:30580923
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoko-O T, et al. (2018) Lipid moiety of glycosylphosphatidylinositol-anchored proteins contributes to the determination of their final destination in yeast. Genes Cells 23(10):880-892 PMID:30133879
    • SGD Paper
    • DOI full text
    • PubMed
  • Manabe K, et al. (2016) Ypq3p-dependent histidine uptake by the vacuolar membrane vesicles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 80(6):1125-30 PMID:26928127
    • SGD Paper
    • DOI full text
    • PubMed
  • Yoko-O T, et al. (2013) Determination and physiological roles of the glycosylphosphatidylinositol lipid remodelling pathway in yeast. Mol Microbiol 88(1):140-55 PMID:23421703
    • SGD Paper
    • DOI full text
    • PubMed
  • Ikeda K, et al. (2011) Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lipid bodies. Appl Microbiol Biotechnol 89(6):1971-7 PMID:21103987
    • SGD Paper
    • DOI full text
    • PubMed
  • Yanamoto T, et al. (2011) The relationship between chromosomal positioning within the nucleus and the SSD1 gene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 75(9):1713-21 PMID:21897045
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2010) Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Appl Microbiol Biotechnol 88(1):277-82 PMID:20625715
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2008) Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem J 414(1):111-9 PMID:18442359
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2007) Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Appl Microbiol Biotechnol 75(3):533-7 PMID:17505771
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2007) Formation of cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making. Biosci Biotechnol Biochem 71(11):2800-7 PMID:17986786
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2007) Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem Biophys Res Commun 352(3):750-5 PMID:17150183
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2006) Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation. Appl Microbiol Biotechnol 72(3):560-5 PMID:16391921
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2005) Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake. Appl Microbiol Biotechnol 69(1):86-91 PMID:15803312
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2004) Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology. Appl Microbiol Biotechnol 66(3):303-5 PMID:15278313
    • SGD Paper
    • DOI full text
    • PubMed
  • Ikeda K, et al. (1999) Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol Cell Biol 19(1):855-63 PMID:9858608
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Utley RT, et al. (1998) Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394(6692):498-502 PMID:9697775
    • SGD Paper
    • DOI full text
    • PubMed
  • Mizunaga T, et al. (1988) Secretion of an active nonglycosylated form of the repressible acid phosphatase of Saccharomyces cerevisiae in the presence of tunicamycin at low temperatures. J Biochem 103(2):321-6 PMID:3286630
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top