AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Guillamón JM
  • References

Author: Guillamón JM


References 63 references


No citations for this author.

Download References (.nbib)

  • Figueroa D, et al. (2025) Optogenetic control of horizontally acquired genes prevent stuck fermentations in yeast. Microbiol Spectr 13(2):e0179424 PMID:39772912
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Planells-Cárcel A, et al. (2025) Metabolic Engineering of a Serotonin Overproducing Saccharomyces cerevisiae Strain. Microb Biotechnol 18(4):e70140 PMID:40186557
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E, et al. (2024) Different Nitrogen Consumption Patterns in Low Temperature Fermentations in the Wine Yeast Saccharomyces cerevisiae. Foods 13(16) PMID:39200449
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Planells-Cárcel A, et al. (2024) A consortium of different Saccharomyces species enhances the content of bioactive tryptophan-derived compounds in wine fermentations. Int J Food Microbiol 416:110681 PMID:38490108
    • SGD Paper
    • DOI full text
    • PubMed
  • Roldán-López D, et al. (2024) The potential role of yeasts in the mitigation of health issues related to beer consumption. Crit Rev Food Sci Nutr 64(10):3059-3074 PMID:36222026
    • SGD Paper
    • DOI full text
    • PubMed
  • Bisquert R, et al. (2023) The Role of the PAA1 Gene on Melatonin Biosynthesis in Saccharomyces cerevisiae: A Search of New Arylalkylamine N-Acetyltransferases. Microorganisms 11(5) PMID:37317089
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisquert R, et al. (2022) Metabolic engineering of Saccharomyces cerevisiae for hydroxytyrosol overproduction directly from glucose. Microb Biotechnol 15(5):1499-1510 PMID:34689412
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E and Guillamón JM (2022) Genomic Adaptations of Saccharomyces Genus to Wine Niche. Microorganisms 10(9) PMID:36144411
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E, et al. (2022) Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics 114(4):110386 PMID:35569731
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez D, et al. (2022) Generation of intra- and interspecific Saccharomyces hybrids with improved oenological and aromatic properties. Microb Biotechnol 15(8):2266-2280 PMID:35485391
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E, et al. (2021) Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations. Int J Food Microbiol 342:109077 PMID:33550155
    • SGD Paper
    • DOI full text
    • PubMed
  • Lairón-Peris M, et al. (2021) Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 87(12):e0044021 PMID:33771787
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez D, et al. (2021) Screening of Saccharomyces strains for the capacity to produce desirable fermentative compounds under the influence of different nitrogen sources in synthetic wine fermentations. Food Microbiol 97:103763 PMID:33653514
    • SGD Paper
    • DOI full text
    • PubMed
  • Su Y, et al. (2021) Phenotypic and genomic differences among S. cerevisiae strains in nitrogen requirements during wine fermentations. Food Microbiol 96:103685 PMID:33494889
    • SGD Paper
    • DOI full text
    • PubMed
  • Su Y, et al. (2021) Impact of Nitrogen Addition on Wine Fermentation by S. cerevisiae Strains with Different Nitrogen Requirements. J Agric Food Chem 69(21):6022-6031 PMID:34014663
    • SGD Paper
    • DOI full text
    • PubMed
  • Lairón-Peris M, et al. (2020) Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions. Front Bioeng Biotechnol 8:129 PMID:32195231
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lip KYF, et al. (2020) Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. Biotechnol Rep (Amst) 26:e00462 PMID:32477898
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Molinet J, et al. (2020) GTR1 Affects Nitrogen Consumption and TORC1 Activity in Saccharomyces cerevisiae Under Fermentation Conditions. Front Genet 11:519 PMID:32523604
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muñiz-Calvo S, et al. (2020) Overproduction of hydroxytyrosol in Saccharomyces cerevisiae by heterologous overexpression of the Escherichia coli 4-hydroxyphenylacetate 3-monooxygenase. Food Chem 308:125646 PMID:31654977
    • SGD Paper
    • DOI full text
    • PubMed
  • Pinheiro T, et al. (2020) Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Sci Rep 10(1):22329 PMID:33339840
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Su Y, et al. (2020) Nitrogen sources preferences of non-Saccharomyces yeasts to sustain growth and fermentation under winemaking conditions. Food Microbiol 85:103287 PMID:31500707
    • SGD Paper
    • DOI full text
    • PubMed
  • García-Ríos E and Guillamón JM (2019) Mechanisms of Yeast Adaptation to Wine Fermentations. Prog Mol Subcell Biol 58:37-59 PMID:30911888
    • SGD Paper
    • DOI full text
    • PubMed
  • García-Ríos E and Guillamón JM (2019) Sulfur dioxide resistance in Saccharomyces cerevisiae: beyond SSU1. Microb Cell 6(12):527-530 PMID:31832424
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E, et al. (2019) A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite. Environ Microbiol 21(5):1771-1781 PMID:30859719
    • SGD Paper
    • DOI full text
    • PubMed
  • Kessi-Pérez EI, et al. (2019) Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast 36(1):65-74 PMID:30094872
    • SGD Paper
    • DOI full text
    • PubMed
  • Kessi-Pérez EI, et al. (2019) KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Front Microbiol 10:1686 PMID:31417508
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muñiz-Calvo S, et al. (2019) Deciphering the melatonin metabolism in Saccharomyces cerevisiae by the bioconversion of related metabolites. J Pineal Res 66(3):e12554 PMID:30633359
    • SGD Paper
    • DOI full text
    • PubMed
  • Su Y, et al. (2019) Fermentative behaviour and competition capacity of cryotolerant Saccharomyces species in different nitrogen conditions. Int J Food Microbiol 291:111-120 PMID:30496940
    • SGD Paper
    • DOI full text
    • PubMed
  • Su Y, et al. (2019) Interspecific hybridisation among diverse Saccharomyces species: A combined biotechnological solution for low-temperature and nitrogen-limited wine fermentations. Int J Food Microbiol 310:108331 PMID:31479829
    • SGD Paper
    • DOI full text
    • PubMed
  • Bisquert R, et al. (2018) Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae. Front Microbiol 9:318 PMID:29541065
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E, et al. (2018) Improving the Cryotolerance of Wine Yeast by Interspecific Hybridization in the Genus Saccharomyces. Front Microbiol 9:3232 PMID:30671041
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E, et al. (2017) The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae. BMC Genomics 18(1):159 PMID:28196526
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guillamón JM and Barrio E (2017) Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 8:806 PMID:28522998
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tronchoni J, et al. (2017) Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyceskudriavzevii hybrids during low temperature winemaking. F1000Res 6:679 PMID:29067162
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E, et al. (2016) Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae. Front Microbiol 7:1199 PMID:27536287
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E, et al. (2016) iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation. J Proteomics 146:70-9 PMID:27343759
    • SGD Paper
    • DOI full text
    • PubMed
  • Salvadó Z, et al. (2016) Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. Int J Food Microbiol 236:38-46 PMID:27442849
    • SGD Paper
    • DOI full text
    • PubMed
  • López-Malo M, et al. (2015) Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genomics 16(1):537 PMID:26194190
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Ríos E, et al. (2014) Global phenotypic and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations. BMC Genomics 15(1):1059 PMID:25471357
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ibáñez C, et al. (2014) Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies. Int J Food Microbiol 171:129-35 PMID:24334254
    • SGD Paper
    • DOI full text
    • PubMed
  • Tronchoni J, et al. (2014) Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations. BMC Genomics 15(1):432 PMID:24898014
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chiva R, et al. (2012) Analysis of low temperature-induced genes (LTIG) in wine yeast during alcoholic fermentation. FEMS Yeast Res 12(7):831-43 PMID:22835029
    • SGD Paper
    • DOI full text
    • PubMed
  • Redón M, et al. (2012) Effect of low temperature upon vitality of Saccharomyces cerevisiae phospholipid mutants. Yeast 29(10):443-52 PMID:23027642
    • SGD Paper
    • DOI full text
    • PubMed
  • Salvadó Z, et al. (2012) Functional analysis to identify genes in wine yeast adaptation to low-temperature fermentation. J Appl Microbiol 113(1):76-88 PMID:22507142
    • SGD Paper
    • DOI full text
    • PubMed
  • Tronchoni J, et al. (2012) Lipid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown at low temperature. Int J Food Microbiol 155(3):191-8 PMID:22405355
    • SGD Paper
    • DOI full text
    • PubMed
  • Salvadó Z, et al. (2011) Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl Environ Microbiol 77(7):2292-302 PMID:21317255
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Salvadó Z, et al. (2011) Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Food Microbiol 28(6):1155-61 PMID:21645814
    • SGD Paper
    • DOI full text
    • PubMed
  • Andorrà I, et al. (2010) Determination of viable wine yeast using DNA binding dyes and quantitative PCR. Int J Food Microbiol 144(2):257-62 PMID:21036413
    • SGD Paper
    • DOI full text
    • PubMed
  • Arroyo-López FN, et al. (2010) Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments. Yeast 27(12):1005-15 PMID:20824889
    • SGD Paper
    • DOI full text
    • PubMed
  • Salvadó Z, et al. (2008) Proteomic evolution of a wine yeast during the first hours of fermentation. FEMS Yeast Res 8(7):1137-46 PMID:18503542
    • SGD Paper
    • DOI full text
    • PubMed
  • Hierro N, et al. (2007) Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR. FEMS Yeast Res 7(8):1340-9 PMID:17727658
    • SGD Paper
    • DOI full text
    • PubMed
  • Hierro N, et al. (2006) Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl Environ Microbiol 72(11):7148-55 PMID:17088381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beltran G, et al. (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53(4):996-1002 PMID:15713011
    • SGD Paper
    • DOI full text
    • PubMed
  • Novo MT, et al. (2005) Effect of nitrogen limitation and surplus upon trehalose metabolism in wine yeast. Appl Microbiol Biotechnol 66(5):560-6 PMID:15375634
    • SGD Paper
    • DOI full text
    • PubMed
  • Beltran G, et al. (2004) Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res 4(6):625-32 PMID:15040951
    • SGD Paper
    • DOI full text
    • PubMed
  • Novo MT, et al. (2003) Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations. Int J Food Microbiol 86(1-2):153-61 PMID:12892930
    • SGD Paper
    • DOI full text
    • PubMed
  • Torija MJ, et al. (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85(1-2):127-36 PMID:12810277
    • SGD Paper
    • DOI full text
    • PubMed
  • Torija MJ, et al. (2003) Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity. J Agric Food Chem 51(4):916-22 PMID:12568549
    • SGD Paper
    • DOI full text
    • PubMed
  • Torija MJ, et al. (2003) Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int J Food Microbiol 80(1):47-53 PMID:12430770
    • SGD Paper
    • DOI full text
    • PubMed
  • Beltran G, et al. (2002) Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst Appl Microbiol 25(2):287-93 PMID:12353885
    • SGD Paper
    • DOI full text
    • PubMed
  • Sabate J, et al. (2002) Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol Res 157(4):267-74 PMID:12501990
    • SGD Paper
    • DOI full text
    • PubMed
  • Guillamón JM, et al. (2001) The glutamate synthase (GOGAT) of Saccharomyces cerevisiae plays an important role in central nitrogen metabolism. FEMS Yeast Res 1(3):169-75 PMID:12702341
    • SGD Paper
    • DOI full text
    • PubMed
  • Torija MJ, et al. (2001) Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 79(3-4):345-52 PMID:11816978
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top