Figueroa D, et al. (2025) Optogenetic control of horizontally acquired genes prevent stuck fermentations in yeast. Microbiol Spectr 13(2):e0179424 PMID:39772912
Planells-Cárcel A, et al. (2025) Metabolic Engineering of a Serotonin Overproducing Saccharomyces cerevisiae Strain. Microb Biotechnol 18(4):e70140 PMID:40186557
García-Ríos E, et al. (2024) Different Nitrogen Consumption Patterns in Low Temperature Fermentations in the Wine Yeast Saccharomyces cerevisiae. Foods 13(16) PMID:39200449
Planells-Cárcel A, et al. (2024) A consortium of different Saccharomyces species enhances the content of bioactive tryptophan-derived compounds in wine fermentations. Int J Food Microbiol 416:110681 PMID:38490108
Roldán-López D, et al. (2024) The potential role of yeasts in the mitigation of health issues related to beer consumption. Crit Rev Food Sci Nutr 64(10):3059-3074 PMID:36222026
Bisquert R, et al. (2023) The Role of the PAA1 Gene on Melatonin Biosynthesis in Saccharomyces cerevisiae: A Search of New Arylalkylamine N-Acetyltransferases. Microorganisms 11(5) PMID:37317089
Bisquert R, et al. (2022) Metabolic engineering of Saccharomyces cerevisiae for hydroxytyrosol overproduction directly from glucose. Microb Biotechnol 15(5):1499-1510 PMID:34689412
García-Ríos E, et al. (2022) Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics 114(4):110386 PMID:35569731
Pérez D, et al. (2022) Generation of intra- and interspecific Saccharomyces hybrids with improved oenological and aromatic properties. Microb Biotechnol 15(8):2266-2280 PMID:35485391
García-Ríos E, et al. (2021) Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations. Int J Food Microbiol 342:109077 PMID:33550155
Lairón-Peris M, et al. (2021) Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 87(12):e0044021 PMID:33771787
Pérez D, et al. (2021) Screening of Saccharomyces strains for the capacity to produce desirable fermentative compounds under the influence of different nitrogen sources in synthetic wine fermentations. Food Microbiol 97:103763 PMID:33653514
Su Y, et al. (2021) Phenotypic and genomic differences among S. cerevisiae strains in nitrogen requirements during wine fermentations. Food Microbiol 96:103685 PMID:33494889
Su Y, et al. (2021) Impact of Nitrogen Addition on Wine Fermentation by S. cerevisiae Strains with Different Nitrogen Requirements. J Agric Food Chem 69(21):6022-6031 PMID:34014663
Lairón-Peris M, et al. (2020) Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions. Front Bioeng Biotechnol 8:129 PMID:32195231
Lip KYF, et al. (2020) Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. Biotechnol Rep (Amst) 26:e00462 PMID:32477898
Molinet J, et al. (2020)GTR1 Affects Nitrogen Consumption and TORC1 Activity in Saccharomyces cerevisiae Under Fermentation Conditions. Front Genet 11:519 PMID:32523604
Muñiz-Calvo S, et al. (2020) Overproduction of hydroxytyrosol in Saccharomyces cerevisiae by heterologous overexpression of the Escherichia coli 4-hydroxyphenylacetate 3-monooxygenase. Food Chem 308:125646 PMID:31654977
Pinheiro T, et al. (2020) Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Sci Rep 10(1):22329 PMID:33339840
Su Y, et al. (2020) Nitrogen sources preferences of non-Saccharomyces yeasts to sustain growth and fermentation under winemaking conditions. Food Microbiol 85:103287 PMID:31500707
García-Ríos E, et al. (2019) A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite. Environ Microbiol 21(5):1771-1781 PMID:30859719
Kessi-Pérez EI, et al. (2019) Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast 36(1):65-74 PMID:30094872
Kessi-Pérez EI, et al. (2019)KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Front Microbiol 10:1686 PMID:31417508
Muñiz-Calvo S, et al. (2019) Deciphering the melatonin metabolism in Saccharomyces cerevisiae by the bioconversion of related metabolites. J Pineal Res 66(3):e12554 PMID:30633359
Su Y, et al. (2019) Fermentative behaviour and competition capacity of cryotolerant Saccharomyces species in different nitrogen conditions. Int J Food Microbiol 291:111-120 PMID:30496940
Su Y, et al. (2019) Interspecific hybridisation among diverse Saccharomyces species: A combined biotechnological solution for low-temperature and nitrogen-limited wine fermentations. Int J Food Microbiol 310:108331 PMID:31479829
Bisquert R, et al. (2018) Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae. Front Microbiol 9:318 PMID:29541065
García-Ríos E, et al. (2018) Improving the Cryotolerance of Wine Yeast by Interspecific Hybridization in the Genus Saccharomyces. Front Microbiol 9:3232 PMID:30671041
García-Ríos E, et al. (2017) The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae. BMC Genomics 18(1):159 PMID:28196526
Tronchoni J, et al. (2017) Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyceskudriavzevii hybrids during low temperature winemaking. F1000Res 6:679 PMID:29067162
García-Ríos E, et al. (2016) Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae. Front Microbiol 7:1199 PMID:27536287
García-Ríos E, et al. (2016) iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation. J Proteomics 146:70-9 PMID:27343759
Salvadó Z, et al. (2016) Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. Int J Food Microbiol 236:38-46 PMID:27442849
López-Malo M, et al. (2015) Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genomics 16(1):537 PMID:26194190
García-Ríos E, et al. (2014) Global phenotypic and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations. BMC Genomics 15(1):1059 PMID:25471357
Ibáñez C, et al. (2014) Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies. Int J Food Microbiol 171:129-35 PMID:24334254
Tronchoni J, et al. (2014) Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations. BMC Genomics 15(1):432 PMID:24898014
Chiva R, et al. (2012) Analysis of low temperature-induced genes (LTIG) in wine yeast during alcoholic fermentation. FEMS Yeast Res 12(7):831-43 PMID:22835029
Tronchoni J, et al. (2012) Lipid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown at low temperature. Int J Food Microbiol 155(3):191-8 PMID:22405355
Salvadó Z, et al. (2011) Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl Environ Microbiol 77(7):2292-302 PMID:21317255
Salvadó Z, et al. (2011) Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Food Microbiol 28(6):1155-61 PMID:21645814
Andorrà I, et al. (2010) Determination of viable wine yeast using DNA binding dyes and quantitative PCR. Int J Food Microbiol 144(2):257-62 PMID:21036413
Arroyo-López FN, et al. (2010) Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments. Yeast 27(12):1005-15 PMID:20824889
Hierro N, et al. (2007) Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR. FEMS Yeast Res 7(8):1340-9 PMID:17727658
Hierro N, et al. (2006) Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl Environ Microbiol 72(11):7148-55 PMID:17088381
Beltran G, et al. (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53(4):996-1002 PMID:15713011
Novo MT, et al. (2005) Effect of nitrogen limitation and surplus upon trehalose metabolism in wine yeast. Appl Microbiol Biotechnol 66(5):560-6 PMID:15375634
Beltran G, et al. (2004) Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res 4(6):625-32 PMID:15040951
Novo MT, et al. (2003) Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations. Int J Food Microbiol 86(1-2):153-61 PMID:12892930
Torija MJ, et al. (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85(1-2):127-36 PMID:12810277
Torija MJ, et al. (2003) Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity. J Agric Food Chem 51(4):916-22 PMID:12568549
Torija MJ, et al. (2003) Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int J Food Microbiol 80(1):47-53 PMID:12430770
Beltran G, et al. (2002) Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst Appl Microbiol 25(2):287-93 PMID:12353885
Sabate J, et al. (2002) Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol Res 157(4):267-74 PMID:12501990
Guillamón JM, et al. (2001) The glutamate synthase (GOGAT) of Saccharomyces cerevisiae plays an important role in central nitrogen metabolism. FEMS Yeast Res 1(3):169-75 PMID:12702341
Torija MJ, et al. (2001) Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 79(3-4):345-52 PMID:11816978