Faria-Oliveira F, et al. (2015) Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye. BMC Microbiol 15:271 PMID:26608260
Hernández-Haro C, et al. (2015) Immunoproteomic profiling of Saccharomyces cerevisiae systemic infection in a murine model. J Proteomics 112:14-26 PMID:25173100
Faria-Oliveira F, et al. (2014) Methodologies to generate, extract, purify and fractionate yeast ECM for analytical use in proteomics and glycomics. BMC Microbiol 14:244 PMID:25344425
Mascaraque V, et al. (2013) Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components. Mol Cell Proteomics 12(3):557-74 PMID:23221999
Jiménez-Martí E, et al. (2011) Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol 145(1):211-20 PMID:21247650
de Llanos R, et al. (2011) In vivo virulence of commercial Saccharomyces cerevisiae strains with pathogenicity-associated phenotypical traits. Int J Food Microbiol 144(3):393-9 PMID:21081253
Insenser MR, et al. (2010) Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. J Proteomics 73(6):1183-95 PMID:20176154
Pitarch A, et al. (2008) Collection of proteins secreted from yeast protoplasts in active cell wall regeneration. Methods Mol Biol 425:241-63 PMID:18369901
Morín M, et al. (2007) Proteomic analysis reveals metabolic changes during yeast to hypha transition in Yarrowia lipolytica. J Mass Spectrom 42(11):1453-62 PMID:17960580
López-Villar E, et al. (2006) Genetic and proteomic evidences support the localization of yeast enolase in the cell surface. Proteomics 6 Suppl 1:S107-18 PMID:16544286
Martinez-Lopez R, et al. (2006) Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells. Eukaryot Cell 5(1):140-7 PMID:16400176
Zuzuarregui A, et al. (2006) Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol 72(1):836-47 PMID:16391125
Martinez-Lopez R, et al. (2004) The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans. Microbiology (Reading) 150(Pt 10):3341-54 PMID:15470113
Pardo M, et al. (2004) PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology (Reading) 150(Pt 12):4157-70 PMID:15583168
de Groot PW, et al. (2001) A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2(3):124-42 PMID:18628907
Pardo M, et al. (2000) A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis 21(16):3396-410 PMID:11079560
Pardo M, et al. (2000) Cross-species identification of novel Candida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Electrophoresis 21(13):2651-9 PMID:10949142
Pardo M, et al. (1999) Two-dimensional analysis of proteins secreted by Saccharomyces cerevisiae regenerating protoplasts: a novel approach to study the cell wall. Yeast 15(6):459-72 PMID:10234784
Negredo A, et al. (1997) Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology (Reading) 143 ( Pt 2):297-302 PMID:9043106