AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Fratti RA
  • References

Author: Fratti RA


References 30 references


No citations for this author.

Download References (.nbib)

  • Zhang C, et al. (2024) Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion. J Biol Chem 300(11):107808 PMID:39307308
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang C, et al. (2022) High throughput analysis of vacuolar acidification. Anal Biochem 658:114927 PMID:36167157
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang C, et al. (2022) The interdependent transport of yeast vacuole Ca2+ and H+ and the role of phosphatidylinositol 3,5-bisphosphate. J Biol Chem 298(12):102672 PMID:36334632
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hurst LR and Fratti RA (2020) Lipid Rafts, Sphingolipids, and Ergosterol in Yeast Vacuole Fusion and Maturation. Front Cell Dev Biol 8:539 PMID:32719794
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miner GE, et al. (2020) Phosphatidylinositol 3,5-bisphosphate regulates Ca2+ transport during yeast vacuolar fusion through the Ca2+ ATPase Pmc1. Traffic 21(7):503-517 PMID:32388897
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miner GE, et al. (2019) Phosphatidylinositol 3,5-bisphosphate regulates the transition between trans-SNARE complex formation and vacuole membrane fusion. Mol Biol Cell 30(2):201-208 PMID:30427760
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miner GE, et al. (2019) Copper blocks V-ATPase activity and SNARE complex formation to inhibit yeast vacuole fusion. Traffic 20(11):841-850 PMID:31368617
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sparks RP, et al. (2019) A small-molecule competitive inhibitor of phosphatidic acid binding by the AAA+ protein NSF/Sec18 blocks the SNARE-priming stage of vacuole fusion. J Biol Chem 294(46):17168-17185 PMID:31515268
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Starr ML and Fratti RA (2019) The Participation of Regulatory Lipids in Vacuole Homotypic Fusion. Trends Biochem Sci 44(6):546-554 PMID:30587414
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Starr ML, et al. (2019) Phosphatidic acid induces conformational changes in Sec18 protomers that prevent SNARE priming. J Biol Chem 294(9):3100-3116 PMID:30617180
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miner GE, et al. (2017) Deleting the DAG kinase Dgk1 augments yeast vacuole fusion through increased Ypt7 activity and altered membrane fluidity. Traffic 18(5):315-329 PMID:28276191
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miner GE, et al. (2016) The Central Polybasic Region of the Soluble SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Vam7 Affects Binding to Phosphatidylinositol 3-Phosphate by the PX (Phox Homology) Domain. J Biol Chem 291(34):17651-63 PMID:27365394
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Starr ML, et al. (2016) Phosphatidic Acid Sequesters Sec18p from cis-SNARE Complexes to Inhibit Priming. Traffic 17(10):1091-109 PMID:27364524
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lawrence G, et al. (2014) Dynamic association of the PI3P-interacting Mon1-Ccz1 GEF with vacuoles is controlled through its phosphorylation by the type 1 casein kinase Yck3. Mol Biol Cell 25(10):1608-19 PMID:24623720
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sasser TL and Fratti RA (2014) Class C ABC transporters and Saccharomyces cerevisiae vacuole fusion. Cell Logist 4(3):e943588 PMID:25610719
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Karunakaran S and Fratti RA (2013) The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition. Traffic 14(6):650-62 PMID:23438067
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sasser TL, et al. (2013) The yeast ATP-binding cassette (ABC) transporter Ycf1p enhances the recruitment of the soluble SNARE Vam7p to vacuoles for efficient membrane fusion. J Biol Chem 288(25):18300-10 PMID:23658021
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Karunakaran S, et al. (2012) SNAREs, HOPS and regulatory lipids control the dynamics of vacuolar actin during homotypic fusion in S. cerevisiae. J Cell Sci 125(Pt 7):1683-92 PMID:22357954
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasser T, et al. (2012) Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion. J Biol Chem 287(3):2221-36 PMID:22121197
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sasser TL, et al. (2012) The yeast vacuolar ABC transporter Ybt1p regulates membrane fusion through Ca2+ transport modulation. Biochem J 448(3):365-72 PMID:22970809
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu QS and Fratti RA (2010) The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion. J Cell Sci 123(Pt 19):3266-75 PMID:20826459
    • SGD Paper
    • DOI full text
    • PubMed
  • Fratti RA and Wickner W (2007) Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p. J Biol Chem 282(17):13133-8 PMID:17347148
    • SGD Paper
    • DOI full text
    • PubMed
  • Fratti RA, et al. (2007) Stringent 3Q.1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. J Biol Chem 282(20):14861-7 PMID:17400548
    • SGD Paper
    • DOI full text
    • PubMed
  • Jun Y, et al. (2006) Reversible, cooperative reactions of yeast vacuole docking. EMBO J 25(22):5260-9 PMID:17082764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stroupe C, et al. (2006) Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J 25(8):1579-89 PMID:16601699
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Collins KM, et al. (2005) Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J 24(10):1775-86 PMID:15889152
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Starai VJ, et al. (2005) Ion regulation of homotypic vacuole fusion in Saccharomyces cerevisiae. J Biol Chem 280(17):16754-62 PMID:15737991
    • SGD Paper
    • DOI full text
    • PubMed
  • Fratti RA, et al. (2004) Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 167(6):1087-98 PMID:15611334
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jun Y, et al. (2004) Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion. J Biol Chem 279(51):53186-95 PMID:15485855
    • SGD Paper
    • DOI full text
    • PubMed
  • Thorngren N, et al. (2004) A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. EMBO J 23(14):2765-76 PMID:15241469
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top