AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Clark DJ
  • References

Author: Clark DJ


References 49 references


No citations for this author.

Download References (.nbib)

  • Prajapati HK, et al. (2025) The yeast genome is globally accessible in living cells. Nat Struct Mol Biol 32(2):247-256 PMID:39587299
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dennis AF, et al. (2024) Examining chromatin heterogeneity through PacBio long-read sequencing of M.EcoGII methylated genomes: an m6A detection efficiency and calling bias correcting pipeline. Nucleic Acids Res 52(9):e45 PMID:38634798
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Coey CT and Clark DJ (2022) A systematic genome-wide account of binding sites for the model transcription factor Gcn4. Genome Res 32(2):367-377 PMID:34916251
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eriksson PR and Clark DJ (2021) The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution. Sci Rep 11(1):4195 PMID:33602956
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marr LT, et al. (2021) Global histone protein surface accessibility in yeast indicates a uniformly loosely packed genome with canonical nucleosomes. Epigenetics Chromatin 14(1):5 PMID:33430969
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (2021) Correction: Chromatin remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast. Nucleic Acids Res 49(1):599 PMID:33290553
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Au WC, et al. (2020) Skp, Cullin, F-box (SCF)-Met30 and SCF-Cdc4-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A for Chromosomal Stability in Budding Yeast. PLoS Genet 16(2):e1008597 PMID:32032354
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eisenstatt JR, et al. (2020) Dbf4-Dependent Kinase (DDK)-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A in Saccharomyces cerevisiae. G3 (Bethesda) 10(6):2057-2068 PMID:32295767
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marr LT, et al. (2020) A method for assessing histone surface accessibility genome-wide. Methods 184:61-69 PMID:31830524
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prajapati HK, et al. (2020) Interplay among ATP-Dependent Chromatin Remodelers Determines Chromatin Organisation in Yeast. Biology (Basel) 9(8) PMID:32722483
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (2020) Chromatin remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast. Nucleic Acids Res 48(15):8408-8430 PMID:32663283
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chereji RV, et al. (2019) Accessibility of promoter DNA is not the primary determinant of chromatin-mediated gene regulation. Genome Res 29(12):1985-1995 PMID:31511305
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hamdani O, et al. (2019) tRNA Genes Affect Chromosome Structure and Function via Local Effects. Mol Cell Biol 39(8) PMID:30718362
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ocampo J, et al. (2019) Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Genome Res 29(3):407-417 PMID:30683752
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mehta GD, et al. (2018) Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast. Mol Cell 72(5):875-887.e9 PMID:30318444
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rawal Y, et al. (2018) Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast. Mol Cell 70(2):297-311.e4 PMID:29628310
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rawal Y, et al. (2018) SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev 32(9-10):695-710 PMID:29785963
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chereji RV, et al. (2017) MNase-Sensitive Complexes in Yeast: Nucleosomes and Non-histone Barriers. Mol Cell 65(3):565-577.e3 PMID:28157509
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cole HA, et al. (2016) Novel nucleosomal particles containing core histones and linker DNA but no histone H1. Nucleic Acids Res 44(2):573-81 PMID:26400169
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ocampo J, et al. (2016) The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res 44(10):4625-35 PMID:26861626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (2016) Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation. Genome Res 26(2):211-25 PMID:26602697
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ocampo J and Clark DJ (2015) A Positive Twist to the Centromeric Nucleosome. Cell Rep 13(4):645-646 PMID:26510160
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chang HW, et al. (2014) Analysis of the mechanism of nucleosome survival during transcription. Nucleic Acids Res 42(3):1619-27 PMID:24234452
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cole HA, et al. (2014) Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases. Nucleic Acids Res 42(20):12512-22 PMID:25348398
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ganguli D, et al. (2014) RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res 24(10):1637-49 PMID:25015381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nagarajavel V, et al. (2013) Global 'bootprinting' reveals the elastic architecture of the yeast TFIIIB-TFIIIC transcription complex in vivo. Nucleic Acids Res 41(17):8135-43 PMID:23856458
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cole HA, et al. (2012) Genome-wide mapping of nucleosomes in yeast using paired-end sequencing. Methods Enzymol 513:145-68 PMID:22929768
    • SGD Paper
    • DOI full text
    • PubMed
  • Cole HA, et al. (2012) Perfect and imperfect nucleosome positioning in yeast. Biochim Biophys Acta 1819(7):639-43 PMID:22306662
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cui F, et al. (2012) Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing. Nucleic Acids Res 40(21):10753-64 PMID:23012262
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eriksson PR, et al. (2012) Regulation of histone gene expression in budding yeast. Genetics 191(1):7-20 PMID:22555441
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cole HA, et al. (2011) Activation-induced disruption of nucleosome position clusters on the coding regions of Gcn4-dependent genes extends into neighbouring genes. Nucleic Acids Res 39(22):9521-35 PMID:21880600
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cole HA, et al. (2011) The centromeric nucleosome of budding yeast is perfectly positioned and covers the entire centromere. Proc Natl Acad Sci U S A 108(31):12687-92 PMID:21768332
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eriksson PR, et al. (2011) Spt10 and Swi4 control the timing of histone H2A/H2B gene activation in budding yeast. Mol Cell Biol 31(3):557-72 PMID:21115727
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gaykalova DA, et al. (2011) A polar barrier to transcription can be circumvented by remodeler-induced nucleosome translocation. Nucleic Acids Res 39(9):3520-8 PMID:21245049
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clark DJ (2010) Nucleosome positioning, nucleosome spacing and the nucleosome code. J Biomol Struct Dyn 27(6):781-93 PMID:20232933
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mendiratta G, et al. (2007) Cooperative binding of the yeast Spt10p activator to the histone upstream activating sequences is mediated through an N-terminal dimerization domain. Nucleic Acids Res 35(3):812-21 PMID:17202156
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim Y, et al. (2006) Activation of Saccharomyces cerevisiae HIS3 results in Gcn4p-dependent, SWI/SNF-dependent mobilization of nucleosomes over the entire gene. Mol Cell Biol 26(22):8607-22 PMID:16982689
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mendiratta G, et al. (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281(11):7040-8 PMID:16415340
    • SGD Paper
    • DOI full text
    • PubMed
  • Tong W, et al. (2006) Topological analysis of plasmid chromatin from yeast and mammalian cells. J Mol Biol 361(5):813-22 PMID:16890953
    • SGD Paper
    • DOI full text
    • PubMed
  • Eriksson PR, et al. (2005) Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements. Mol Cell Biol 25(20):9127-37 PMID:16199888
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim Y, et al. (2004) Purification and nucleosome mapping analysis of native yeast plasmid chromatin. Methods 33(1):59-67 PMID:15039088
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu YV, et al. (2003) Role of C-terminal domain phosphorylation in RNA polymerase II transcription through the nucleosome. Biopolymers 68(4):528-38 PMID:12666177
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim Y and Clark DJ (2002) SWI/SNF-dependent long-range remodeling of yeast HIS3 chromatin. Proc Natl Acad Sci U S A 99(24):15381-6 PMID:12432091
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shen CH, et al. (2002) Targeted histone acetylation at the yeast CUP1 promoter requires the transcriptional activator, the TATA boxes, and the putative histone acetylase encoded by SPT10. Mol Cell Biol 22(18):6406-16 PMID:12192040
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shen CH and Clark DJ (2001) DNA sequence plays a major role in determining nucleosome positions in yeast CUP1 chromatin. J Biol Chem 276(37):35209-16 PMID:11461917
    • SGD Paper
    • DOI full text
    • PubMed
  • Shen CH, et al. (2001) Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences. Mol Cell Biol 21(2):534-47 PMID:11134341
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leblanc BP, et al. (2000) An initiation element in the yeast CUP1 promoter is recognized by RNA polymerase II in the absence of TATA box-binding protein if the DNA is negatively supercoiled. Proc Natl Acad Sci U S A 97(20):10745-50 PMID:10984524
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • West AH, et al. (1992) Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein. J Biol Chem 267(34):24625-33 PMID:1447206
    • SGD Paper
    • PubMed
  • Clark DJ, et al. (1988) A yeast sigma composite element, TY3, has properties of a retrotransposon. J Biol Chem 263(3):1413-23 PMID:2447089
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top