Mochizuki T, et al. (2023) Activation of CWI pathway through high hydrostatic pressure, enhancing glycerol efflux via the aquaglyceroporin Fps1 in Saccharomyces cerevisiae. Mol Biol Cell 34(9):ar92 PMID:37379203
Yamaguchi M, et al. (2021) Rapid Freezing using Sandwich Freezing Device for Good Ultrastructural Preservation of Biological Specimens in Electron Microscopy. J Vis Exp PMID:34338682
Galkina KV, et al. (2020) Deletion of CDR1 reveals redox regulation of pleiotropic drug resistance in Candida glabrata. Biochimie 170:49-56 PMID:31843579
Jin Y, et al. (2020) Functional characteristics of Svl3 and Pam1 that are required for proper cell wall formation in yeast cells. Yeast 37(7-8):359-371 PMID:32491201
Pais P, et al. (2020) A new regulator in the crossroads of oxidative stress resistance and virulence in Candida glabrata: The transcription factor CgTog1. Virulence 11(1):1522-1538 PMID:33135521
Costa C, et al. (2015) New Mechanisms of Flucytosine Resistance in C. glabrata Unveiled by a Chemogenomics Analysis in S. cerevisiae. PLoS One 10(8):e0135110 PMID:26267134
Aoyama T, et al. (2014) Genome-wide survey of transcriptional initiation in the pathogenic fungus, Candida glabrata. Genes Cells 19(6):478-503 PMID:24725256
Costa C, et al. (2014) Candida glabrata drug:H+ antiporter CgTpo3 (ORF CAGL0I10384g): role in azole drug resistance and polyamine homeostasis. J Antimicrob Chemother 69(7):1767-76 PMID:24576949
Costa C, et al. (2013) Candida glabrata drug:H+ antiporter CgQdr2 confers imidazole drug resistance, being activated by transcription factor CgPdr1. Antimicrob Agents Chemother 57(7):3159-67 PMID:23629708
Costa C, et al. (2013) The dual role of candida glabrata drug:H+ antiporter CgAqr1 (ORF CAGL0J09944g) in antifungal drug and acetic acid resistance. Front Microbiol 4:170 PMID:23805133
Nagao J, et al. (2012) Candida albicans Msi3p, a homolog of the Saccharomyces cerevisiae Sse1p of the Hsp70 family, is involved in cell growth and fluconazole tolerance. FEMS Yeast Res 12(6):728-37 PMID:22713118
Namiki Y, et al. (2011) Scanning and negative-staining electron microscopy of protoplast regeneration of a wild-type and two chitin synthase mutants in the pathogenic yeast Candida glabrata. J Electron Microsc (Tokyo) 60(2):157-65 PMID:21216729
Nakayama H, et al. (2007) The Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the presence of serum. J Antimicrob Chemother 60(6):1264-72 PMID:17913716
Miyakawa Y, et al. (2006) [Essential genes as potential targets of antifungal agents in pathogenic yeast Candida]. Nihon Ishinkin Gakkai Zasshi 47(4):269-74 PMID:17086158
Chibana H, et al. (2005) Sequence finishing and gene mapping for Candida albicans chromosome 7 and syntenic analysis against the Saccharomyces cerevisiae genome. Genetics 170(4):1525-37 PMID:15937140
Cho T, et al. (2001) Isolation and expression of a gene (CGR1) regulated during the yeast-hyphal transition in Candida albicans. Biochim Biophys Acta 1517(2):288-92 PMID:11342110
Ohta A, et al. (2000) The VIG9 gene products from the human pathogenic fungi Candida albicans and Candida glabrata encode GDP-mannose pyrophosphorylase. Biochim Biophys Acta 1475(3):265-72 PMID:10913825
Sudoh M, et al. (1999) The Candida albicans CHS4 gene complements a Saccharomyces cerevisiae skt5/chs4 mutation and is involved in chitin biosynthesis. Microbiology (Reading) 145 ( Pt 7):1613-1622 PMID:10439400