AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Cejka P
  • References

Author: Cejka P


References 52 references


No citations for this author.

Download References (.nbib)

  • Roy M, et al. (2025) EXO1 promotes the meiotic MLH1-MLH3 endonuclease through conserved interactions with MLH1, MSH4 and DNA. Nat Commun 16(1):4141 PMID:40319035
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Galanti L, et al. (2024) Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination. Nat Commun 15(1):2890 PMID:38570537
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson D, et al. (2024) Exploring the removal of Spo11 and topoisomerases from DNA breaks in S. cerevisiae by human Tyrosyl DNA Phosphodiesterase 2. DNA Repair (Amst) 142:103757 PMID:39236418
    • SGD Paper
    • DOI full text
    • PubMed
  • Möller C, et al. (2024) Xrs2/NBS1 promote end-bridging activity of the MRE11-RAD50 complex. Biochem Biophys Res Commun 695:149464 PMID:38217957
    • SGD Paper
    • DOI full text
    • PubMed
  • Nicolas Y, et al. (2024) Molecular insights into the activation of Mre11-Rad50 endonuclease activity by Sae2/CtIP. Mol Cell 84(12):2223-2237.e4 PMID:38870937
    • SGD Paper
    • DOI full text
    • PubMed
  • Tamai T, et al. (2024) Sae2 controls Mre11 endo- and exonuclease activities by different mechanisms. Nat Commun 15(1):7221 PMID:39174552
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gnügge R, et al. (2023) Sequence and chromatin features guide DNA double-strand break resection initiation. Mol Cell 83(8):1237-1250.e15 PMID:36917982
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kissling VM, et al. (2022) Mre11-Rad50 oligomerization promotes DNA double-strand break repair. Nat Commun 13(1):2374 PMID:35501303
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Acharya A, et al. (2021) Distinct RPA domains promote recruitment and the helicase-nuclease activities of Dna2. Nat Commun 12(1):6521 PMID:34764291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cejka P (2021) Single-molecule studies illuminate the function of RAD51 paralogs. Mol Cell 81(5):898-900 PMID:33667380
    • SGD Paper
    • DOI full text
    • PubMed
  • Dai J, et al. (2021) Molecular basis of the dual role of the Mlh1-Mlh3 endonuclease in MMR and in meiotic crossover formation. Proc Natl Acad Sci U S A 118(23) PMID:34088835
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Khayat F, et al. (2021) Inhibition of MRN activity by a telomere protein motif. Nat Commun 12(1):3856 PMID:34158470
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marsella A, et al. (2021) Sae2 and Rif2 regulate MRX endonuclease activity at DNA double-strand breaks in opposite manners. Cell Rep 34(13):108906 PMID:33789097
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vernekar DV, et al. (2021) The Pif1 helicase is actively inhibited during meiotic recombination which restrains gene conversion tract length. Nucleic Acids Res 49(8):4522-4533 PMID:33823531
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cannavo E, et al. (2020) Regulation of the MLH1-MLH3 endonuclease in meiosis. Nature 586(7830):618-622 PMID:32814904
    • SGD Paper
    • DOI full text
    • PubMed
  • Chansel-Da Cruz M, et al. (2020) A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans. Cell Rep 33(13):108559 PMID:33378670
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Grigaitis R, et al. (2020) Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis. Dev Cell 53(6):706-723.e5 PMID:32504558
    • SGD Paper
    • DOI full text
    • PubMed
  • He W, et al. (2020) Regulated Proteolysis of MutSγ Controls Meiotic Crossing Over. Mol Cell 78(1):168-183.e5 PMID:32130890
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Howard SM, et al. (2020) The internal region of CtIP negatively regulates DNA end resection. Nucleic Acids Res 48(10):5485-5498 PMID:32347940
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sanchez A, et al. (2020) Exo1 recruits Cdc5 polo kinase to MutLγ to ensure efficient meiotic crossover formation. Proc Natl Acad Sci U S A 117(48):30577-30588 PMID:33199619
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Öz R, et al. (2020) Phosphorylated CtIP bridges DNA to promote annealing of broken ends. Proc Natl Acad Sci U S A 117(35):21403-21412 PMID:32817418
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Anand R, et al. (2019) NBS1 promotes the endonuclease activity of the MRE11-RAD50 complex by sensing CtIP phosphorylation. EMBO J 38(7) PMID:30787182
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cannavo E, et al. (2019) Stepwise 5' DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble. Proc Natl Acad Sci U S A 116(12):5505-5513 PMID:30819891
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kasaciunaite K, et al. (2019) Competing interaction partners modulate the activity of Sgs1 helicase during DNA end resection. EMBO J 38(13):e101516 PMID:31268598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ranjha L, et al. (2019) Sumoylation regulates the stability and nuclease activity of Saccharomyces cerevisiae Dna2. Commun Biol 2:174 PMID:31098407
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cannavo E, et al. (2018) Regulatory control of DNA end resection by Sae2 phosphorylation. Nat Commun 9(1):4016 PMID:30275497
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • De Muyt A, et al. (2018) A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes Dev 32(3-4):283-296 PMID:29440262
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Duroc Y, et al. (2017) Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion. Elife 6 PMID:28051769
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Levikova M, et al. (2017) The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection. Genes Dev 31(5):493-502 PMID:28336515
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reginato G, et al. (2017) Physiological protein blocks direct the Mre11-Rad50-Xrs2 and Sae2 nuclease complex to initiate DNA end resection. Genes Dev 31(23-24):2325-2330 PMID:29321179
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Anand R, et al. (2016) Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection. Mol Cell 64(5):940-950 PMID:27889449
    • SGD Paper
    • DOI full text
    • PubMed
  • Kemmerich FE, et al. (2016) Force regulated dynamics of RPA on a DNA fork. Nucleic Acids Res 44(12):5837-48 PMID:27016742
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oh J, et al. (2016) Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex. Mol Cell 64(2):405-415 PMID:27746018
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ölmezer G, et al. (2016) Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1. Nat Commun 7:13157 PMID:27779184
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cejka P (2015) DNA End Resection: Nucleases Team Up with the Right Partners to Initiate Homologous Recombination. J Biol Chem 290(38):22931-8 PMID:26231213
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasching CL, et al. (2015) Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol Cell 57(4):595-606 PMID:25699708
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Levikova M and Cejka P (2015) The Saccharomyces cerevisiae Dna2 can function as a sole nuclease in the processing of Okazaki fragments in DNA replication. Nucleic Acids Res 43(16):7888-97 PMID:26175049
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bocquet N, et al. (2014) Structural and mechanistic insight into Holliday-junction dissolution by topoisomerase IIIα and RMI1. Nat Struct Mol Biol 21(3):261-8 PMID:24509834
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cannavo E and Cejka P (2014) Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514(7520):122-5 PMID:25231868
    • SGD Paper
    • DOI full text
    • PubMed
  • Ranjha L, et al. (2014) The Saccharomyces cerevisiae Mlh1-Mlh3 heterodimer is an endonuclease that preferentially binds to Holliday junctions. J Biol Chem 289(9):5674-86 PMID:24443562
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cannavo E, et al. (2013) Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. Proc Natl Acad Sci U S A 110(18):E1661-8 PMID:23589858
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ghodgaonkar MM, et al. (2013) Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol Cell 50(3):323-32 PMID:23603115
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Levikova M, et al. (2013) Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity. Proc Natl Acad Sci U S A 110(22):E1992-2001 PMID:23671118
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Paeschke K, et al. (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497(7450):458-62 PMID:23657261
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cejka P, et al. (2012) Decatenation of DNA by the S. cerevisiae Sgs1-Top3-Rmi1 and RPA complex: a mechanism for disentangling chromosomes. Mol Cell 47(6):886-96 PMID:22885009
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cejka P and Kowalczykowski SC (2010) The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions. J Biol Chem 285(11):8290-301 PMID:20086270
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cejka P, et al. (2010) Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3. Nat Struct Mol Biol 17(11):1377-82 PMID:20935631
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cejka P, et al. (2010) DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467(7311):112-6 PMID:20811461
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cejka P and Jiricny J (2008) Interplay of DNA repair pathways controls methylation damage toxicity in Saccharomyces cerevisiae. Genetics 179(4):1835-44 PMID:18579505
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Horák T, et al. (2008) Determination of free medium-chain fatty acids in beer by stir bar sorptive extraction. J Chromatogr A 1196-1197:96-9 PMID:18508065
    • SGD Paper
    • DOI full text
    • PubMed
  • Cejka P, et al. (2005) Homologous recombination rescues mismatch-repair-dependent cytotoxicity of S(N)1-type methylating agents in S. cerevisiae. Curr Biol 15(15):1395-400 PMID:16085492
    • SGD Paper
    • DOI full text
    • PubMed
  • Cejka P, et al. (2001) Dissection of the functions of the Saccharomyces cerevisiae RAD6 postreplicative repair group in mutagenesis and UV sensitivity. Genetics 159(3):953-63 PMID:11729144
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top