Haimov O, et al. (2018) Dynamic Interaction of Eukaryotic Initiation Factor 4G1 (eIF4G1) with eIF4E and eIF1 Underlies Scanning-Dependent and -Independent Translation. Mol Cell Biol 38(18) PMID:29987188
Murakami R, et al. (2018) The Interaction between the Ribosomal Stalk Proteins and Translation Initiation Factor 5B Promotes Translation Initiation. Mol Cell Biol 38(16) PMID:29844065
Hiraishi H, et al. (2013) Interaction between 25S rRNA A loop and eukaryotic translation initiation factor 5B promotes subunit joining and ensures stringent AUG selection. Mol Cell Biol 33(18):3540-8 PMID:23836883
Luna RE, et al. (2013) The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes. Biochemistry 52(52):9510-8 PMID:24319994
Nemoto N, et al. (2013) Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function. Translation (Austin) 1(2):e26402 PMID:26824023
Luna RE, et al. (2012) The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β. Cell Rep 1(6):689-702 PMID:22813744
Singh CR, et al. (2012) Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode. Mol Cell Biol 32(19):3978-89 PMID:22851688
Nemoto N, et al. (2010) Yeast 18 S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation. J Biol Chem 285(42):32200-12 PMID:20699223
Watanabe R, et al. (2010) The eukaryotic initiation factor (eIF) 4G HEAT domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase. J Biol Chem 285(29):21922-33 PMID:20463023
Reibarkh M, et al. (2008) Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J Biol Chem 283(2):1094-103 PMID:17974565
Singh CR, et al. (2007) Change in nutritional status modulates the abundance of critical pre-initiation intermediate complexes during translation initiation in vivo. J Mol Biol 370(2):315-30 PMID:17512538
Asano K (2006) [Translational and transcriptional control by eIF2 phosphorylation: requirement for integrity of ribosomal preinitiation complex]. Tanpakushitsu Kakusan Koso 51(5):389-98 PMID:16686341
Singh CR, et al. (2005) Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation. Mol Cell Biol 25(13):5480-91 PMID:15964804
Singh CR, et al. (2004) Physical association of eukaryotic initiation factor (eIF) 5 carboxyl-terminal domain with the lysine-rich eIF2beta segment strongly enhances its binding to eIF3. J Biol Chem 279(48):49644-55 PMID:15377664
Singh CR, et al. (2004) Efficient incorporation of eukaryotic initiation factor 1 into the multifactor complex is critical for formation of functional ribosomal preinitiation complexes in vivo. J Biol Chem 279(30):31910-20 PMID:15145951
He H, et al. (2003) The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol Cell Biol 23(15):5431-45 PMID:12861028
Asano K, et al. (2001) Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J 20(9):2326-37 PMID:11331597
Asano K, et al. (2001) A multifactor complex of eIF1, eIF2, eIF3, eIF5, and tRNA(i)Met promotes initiation complex assembly and couples GTP hydrolysis to AUG recognition. Cold Spring Harb Symp Quant Biol 66:403-15 PMID:12762043
Shalev A, et al. (2001) Saccharomyces cerevisiae protein Pci8p and human protein eIF3e/Int-6 interact with the eIF3 core complex by binding to cognate eIF3b subunits. J Biol Chem 276(37):34948-57 PMID:11457827
Asano K, et al. (2000) A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev 14(19):2534-46 PMID:11018020
Asano K, et al. (1999) Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J 18(6):1673-88 PMID:10075937
Anderson J, et al. (1998) The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev 12(23):3650-62 PMID:9851972
Asano K, et al. (1998) Complex formation by all five homologues of mammalian translation initiation factor 3 subunits from yeast Saccharomyces cerevisiae. J Biol Chem 273(29):18573-85 PMID:9660829
Phan L, et al. (1998) Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol Cell Biol 18(8):4935-46 PMID:9671501
Asano K, et al. (1997) Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J Biol Chem 272(43):27042-52 PMID:9341143
Hershey JW, et al. (1996) Conservation and diversity in the structure of translation initiation factor EIF3 from humans and yeast. Biochimie 78(11-12):903-7 PMID:9150866
Fukuda K, et al. (1991) A mutated ARO4 gene for feedback-resistant DAHP synthase which causes both o-fluoro-DL-phenylalanine resistance and beta-phenethyl-alcohol overproduction in Saccharomyces cerevisiae. Curr Genet 20(6):453-6 PMID:1723662
Fukuda K, et al. (1991) Isolation and genetic study of p-fluoro-DL-phenylalanine-resistant mutants overproducing beta-phenethyl-alcohol in Saccharomyces cerevisiae. Curr Genet 20(6):449-52 PMID:1723661