AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Asano K
  • References

Author: Asano K


References 37 references


No citations for this author.

Download References (.nbib)

  • Haimov O, et al. (2018) Dynamic Interaction of Eukaryotic Initiation Factor 4G1 (eIF4G1) with eIF4E and eIF1 Underlies Scanning-Dependent and -Independent Translation. Mol Cell Biol 38(18) PMID:29987188
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami R, et al. (2018) The Interaction between the Ribosomal Stalk Proteins and Translation Initiation Factor 5B Promotes Translation Initiation. Mol Cell Biol 38(16) PMID:29844065
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hiraishi H, et al. (2013) Interaction between 25S rRNA A loop and eukaryotic translation initiation factor 5B promotes subunit joining and ensures stringent AUG selection. Mol Cell Biol 33(18):3540-8 PMID:23836883
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Luna RE, et al. (2013) The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes. Biochemistry 52(52):9510-8 PMID:24319994
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nemoto N, et al. (2013) Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function. Translation (Austin) 1(2):e26402 PMID:26824023
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Luna RE, et al. (2012) The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β. Cell Rep 1(6):689-702 PMID:22813744
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Singh CR, et al. (2012) Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode. Mol Cell Biol 32(19):3978-89 PMID:22851688
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Singh CR, et al. (2011) Mechanisms of translational regulation by a human eIF5-mimic protein. Nucleic Acids Res 39(19):8314-28 PMID:21745818
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nemoto N, et al. (2010) Yeast 18 S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation. J Biol Chem 285(42):32200-12 PMID:20699223
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe R, et al. (2010) The eukaryotic initiation factor (eIF) 4G HEAT domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase. J Biol Chem 285(29):21922-33 PMID:20463023
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ongol MP and Asano K (2009) Main microorganisms involved in the fermentation of Ugandan ghee. Int J Food Microbiol 133(3):286-91 PMID:19577815
    • SGD Paper
    • DOI full text
    • PubMed
  • Reibarkh M, et al. (2008) Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J Biol Chem 283(2):1094-103 PMID:17974565
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee B, et al. (2007) Yeast phenotypic assays on translational control. Methods Enzymol 429:105-37 PMID:17913621
    • SGD Paper
    • DOI full text
    • PubMed
  • Singh CR, et al. (2007) Change in nutritional status modulates the abundance of critical pre-initiation intermediate complexes during translation initiation in vivo. J Mol Biol 370(2):315-30 PMID:17512538
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Asano K (2006) [Translational and transcriptional control by eIF2 phosphorylation: requirement for integrity of ribosomal preinitiation complex]. Tanpakushitsu Kakusan Koso 51(5):389-98 PMID:16686341
    • SGD Paper
    • PubMed
  • Singh CR, et al. (2006) An eIF5/eIF2 complex antagonizes guanine nucleotide exchange by eIF2B during translation initiation. EMBO J 25(19):4537-46 PMID:16990799
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Singh CR, et al. (2005) Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation. Mol Cell Biol 25(13):5480-91 PMID:15964804
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hinnebusch AG, et al. (2004) Study of translational control of eukaryotic gene expression using yeast. Ann N Y Acad Sci 1038:60-74 PMID:15838098
    • SGD Paper
    • DOI full text
    • PubMed
  • Singh CR, et al. (2004) Physical association of eukaryotic initiation factor (eIF) 5 carboxyl-terminal domain with the lysine-rich eIF2beta segment strongly enhances its binding to eIF3. J Biol Chem 279(48):49644-55 PMID:15377664
    • SGD Paper
    • DOI full text
    • PubMed
  • Singh CR, et al. (2004) Efficient incorporation of eukaryotic initiation factor 1 into the multifactor complex is critical for formation of functional ribosomal preinitiation complexes in vivo. J Biol Chem 279(30):31910-20 PMID:15145951
    • SGD Paper
    • DOI full text
    • PubMed
  • He H, et al. (2003) The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol Cell Biol 23(15):5431-45 PMID:12861028
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Algire MA, et al. (2002) Development and characterization of a reconstituted yeast translation initiation system. RNA 8(3):382-97 PMID:12008673
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Asano K, et al. (2002) Analysis and reconstitution of translation initiation in vitro. Methods Enzymol 351:221-47 PMID:12073347
    • SGD Paper
    • DOI full text
    • PubMed
  • Asano K and Hinnebusch AG (2001) Protein interactions important in eukaryotic translation initiation. Methods Mol Biol 177:179-98 PMID:11530606
    • SGD Paper
    • DOI full text
    • PubMed
  • Asano K, et al. (2001) Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J 20(9):2326-37 PMID:11331597
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Asano K, et al. (2001) A multifactor complex of eIF1, eIF2, eIF3, eIF5, and tRNA(i)Met promotes initiation complex assembly and couples GTP hydrolysis to AUG recognition. Cold Spring Harb Symp Quant Biol 66:403-15 PMID:12762043
    • SGD Paper
    • DOI full text
    • PubMed
  • Shalev A, et al. (2001) Saccharomyces cerevisiae protein Pci8p and human protein eIF3e/Int-6 interact with the eIF3 core complex by binding to cognate eIF3b subunits. J Biol Chem 276(37):34948-57 PMID:11457827
    • SGD Paper
    • DOI full text
    • PubMed
  • Asano K, et al. (2000) A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev 14(19):2534-46 PMID:11018020
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Asano K, et al. (1999) Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J 18(6):1673-88 PMID:10075937
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Anderson J, et al. (1998) The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev 12(23):3650-62 PMID:9851972
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Asano K, et al. (1998) Complex formation by all five homologues of mammalian translation initiation factor 3 subunits from yeast Saccharomyces cerevisiae. J Biol Chem 273(29):18573-85 PMID:9660829
    • SGD Paper
    • DOI full text
    • PubMed
  • Phan L, et al. (1998) Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol Cell Biol 18(8):4935-46 PMID:9671501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Asano K, et al. (1997) Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J Biol Chem 272(43):27042-52 PMID:9341143
    • SGD Paper
    • DOI full text
    • PubMed
  • Asano K, et al. (1997) Conservation and diversity of eukaryotic translation initiation factor eIF3. J Biol Chem 272(2):1101-9 PMID:8995409
    • SGD Paper
    • DOI full text
    • PubMed
  • Hershey JW, et al. (1996) Conservation and diversity in the structure of translation initiation factor EIF3 from humans and yeast. Biochimie 78(11-12):903-7 PMID:9150866
    • SGD Paper
    • DOI full text
    • PubMed
  • Fukuda K, et al. (1991) A mutated ARO4 gene for feedback-resistant DAHP synthase which causes both o-fluoro-DL-phenylalanine resistance and beta-phenethyl-alcohol overproduction in Saccharomyces cerevisiae. Curr Genet 20(6):453-6 PMID:1723662
    • SGD Paper
    • DOI full text
    • PubMed
  • Fukuda K, et al. (1991) Isolation and genetic study of p-fluoro-DL-phenylalanine-resistant mutants overproducing beta-phenethyl-alcohol in Saccharomyces cerevisiae. Curr Genet 20(6):449-52 PMID:1723661
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top