Reference: Wang Q, et al. (2021) Saccharomyces cerevisiae Rhodanese RDL2 Uses the Arg Residue of the Active-Site Loop for Thiosulfate Decomposition. Antioxidants (Basel) 10(10)

Reference Help

Abstract


Persulfide, polysulfide and thiosulfate are examples of sulfane sulfur containing chemicals that play multiple functions in biological systems. Rhodaneses are widely present in all three kingdoms of life, which catalyze sulfur transfer among these sulfane sulfur-containing chemicals. The mechanism of how rhodaneses function is not well understood. Saccharomyces cerevisiae rhodanese 2 (RDL2) is involved in mitochondrial biogenesis and cell cycle control. Herein, we report a 2.47 Å resolution structure of RDL2 co-crystallized with thiosulfate (PDB entry: 6K6R). The presence of an extra sulfur atom Sδ, forming a persulfide bond with the Sγ atom of Cys106, was observed. Distinct from the persulfide groups in GlpE (PDB entry:1GMX) and rhobov (PDB entry:1BOI), the persulfide group of RDL2 is located in a peanut-like pocket of the neutral electrostatic field and is far away from positively charged amino acid residues of its active-site loop, suggesting no interaction between them. This finding suggests that the positively charged amino acid residues are not involved in the stabilization of the persulfide group. Activity assays indicate that the Arg111 of the active-site loop is critical for the sulfane sulfur transfer. In vitro assays indicate that Arg propels the thiosulfate decomposition. Thus, we propose that Arg can offer a hydrogen bond-rich, acidic-like microenvironment in RDL2 in which thiosulfate decomposes to release sulfane sulfur. Thr of the active-site loop of rhodaneses has the same functions as Arg. Our proposal may explain the catalyzing mechanism of rhodaneses.

Reference Type
Journal Article
Authors
Wang Q, Li H, Xia Y, Xun L, Liu H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference