Reference: Cankorur-Cetinkaya A, et al. (2016) Transcriptomic response of yeast cells to ATX1 deletion under different copper levels. BMC Genomics 17:489

Reference Help

Abstract


Background: Iron and copper homeostatic pathways are tightly linked since copper is required as a cofactor for high affinity iron transport. Atx1p plays an important role in the intracellular copper transport as a copper chaperone transferring copper from the transporters to Ccc2p for its subsequent insertion into Fet3p, which is required for high affinity iron transport.

Results: In this study, genome-wide transcriptional landscape of ATX1 deletants grown in media either lacking copper or having excess copper was investigated. ATX1 deletants were allowed to recover full respiratory capacity in the presence of excess copper in growth environment. The present study revealed that iron ion homeostasis was not significantly affected by the absence of ATX1 either at the transcriptional or metabolic levels, suggesting other possible roles for Atx1p in addition to its function as a chaperone in copper-dependent iron absorption. The analysis of the transcriptomic response of atx1∆/atx1∆ and its integration with the genetic interaction network highlighted for the first time, the possible role of ATX1 in cell cycle regulation, likewise its mammalian counterpart ATOX1, which was reported to play an important role in the copper-stimulated proliferation of non-small lung cancer cells.

Conclusions: The present finding revealed the dispensability of Atx1p for the transfer of copper ions to Ccc2p and highlighted its possible role in the cell cycle regulation. The results also showed the potential of Saccharomyces cerevisiae as a model organism in studying the capacity of ATOX1 as a therapeutic target for lung cancer therapy.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Cankorur-Cetinkaya A, Eraslan S, Kirdar B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference