Reference: Kang CH, et al. (2015) Stress-driven structural and functional switching of Ypt1p from a GTPase to a molecular chaperone mediates thermo tolerance in Saccharomyces cerevisiae. FASEB J 29(11):4424-34

Reference Help

Abstract


Guanosine triphosphatases (GTPases) function as molecular switches in signal transduction pathways that enable cells to respond to extracellular stimuli. Saccharomyces cerevisiae yeast protein two 1 protein (Ypt1p) is a monomeric small GTPase that is essential for endoplasmic reticulum-to-Golgi trafficking. By size-exclusion chromatography, SDS-PAGE, and native PAGE, followed by immunoblot analysis with an anti-Ypt1p antibody, we found that Ypt1p structurally changed from low-molecular-weight (LMW) forms to high-molecular-weight (HMW) complexes after heat shock. Based on our results, Ypt1p exhibited dual functions both as a GTPase and a molecular chaperone, and furthermore, heat shock induced a functional switch from that of a GTPase to a molecular chaperone driven by the structural change from LMW to HMW forms. Subsequently, we found, by using a galactose-inducible expression system, that conditional overexpression of YPT1 in yeast cells enhanced the thermotolerance of cells by increasing the survival rate at 55°C by ∼60%, compared with the control cells expressing YPT1 in the wild-type level. Altogether, our results suggest that Ypt1p is involved in the cellular protection process under heat stress conditions. Also, these findings provide new insight into the in vivo roles of small GTP-binding proteins and have an impact on research and the investigation of human diseases.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kang CH, Lee SY, Park JH, Lee Y, Jung HS, Chi YH, Jung YJ, Chae HB, Shin MR, Kim WY, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference