Reference: Field SJ, et al. (2015) Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates. Biotechnol Biofuels 8:33

Reference Help

Abstract


Background: Fermentation of bioethanol using lignocellulosic biomass as a raw material provides a sustainable alternative to current biofuel production methods by utilising waste food streams as raw material. Before lignocellulose can be fermented, it requires physical, chemical and enzymatic treatment in order to release monosaccharides, a process that causes the chemical transformation of glucose and xylose into the cyclic aldehydes furfural and hydroxyfurfural. These furan compounds are potent inhibitors of Saccharomyces fermentation, and consequently furfural tolerant strains of Saccharomyces are required for lignocellulosic fermentation.

Results: This study investigated yeast tolerance to furfural and hydroxyfurfural using a collection of 71 environmental and industrial isolates of the baker's yeast Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus. The Saccharomyces strains were initially screened for growth on media containing 100 mM glucose and 1.5 mg ml(-1) furfural. Five strains were identified that showed a significant tolerance to growth in the presence of furfural, and these were then screened for growth and ethanol production in the presence of increasing amounts (0.1 to 4 mg ml(-1)) of furfural.

Conclusions: Of the five furfural tolerant strains, S. cerevisiae National Collection of Yeast Cultures (NCYC) 3451 displayed the greatest furfural resistance and was able to grow in the presence of up to 3.0 mg ml(-1) furfural. Furthermore, ethanol production in this strain did not appear to be inhibited by furfural, with the highest ethanol yield observed at 3.0 mg ml(-1) furfural. Although furfural resistance was not found to be a trait specific to any one particular lineage or population, three of the strains were isolated from environments where they might be continually exposed to low levels of furfural through the ongoing natural degradation of lignocelluloses, and would therefore develop elevated levels of resistance to these furan compounds. Thus, these strains represent good candidates for future studies of genetic variation relevant to understanding and manipulating furfural resistance and in the development of tolerant ethanologenic yeast strains for use in bioethanol production from lignocellulose processing.

Reference Type
Journal Article
Authors
Field SJ, Ryden P, Wilson D, James SA, Roberts IN, Richardson DJ, Waldron KW, Clarke TA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference