Reference: Lipatova Z, et al. (2015) Ypt/Rab GTPases: principles learned from yeast. Crit Rev Biochem Mol Biol 50(3):203-11

Reference Help

Abstract


Ypt/Rab GTPases are key regulators of all membrane trafficking events in eukaryotic cells. They act as molecular switches that attach to membranes via lipid tails to recruit their multiple downstream effectors, which mediate vesicular transport. Originally discovered in yeast as Ypts, they were later shown to be conserved from yeast to humans, where Rabs are relevant to a wide array of diseases. Major principles learned from our past studies in yeast are currently accepted in the Ypt/Rab field including: (i) Ypt/Rabs are not transport-step specific, but are rather compartment specific, (ii) stimulation by nucleotide exchangers, GEFs, is critical to their function, whereas GTP hydrolysis plays a role in their cycling between membranes and the cytoplasm for multiple rounds of action, (iii) they mediate diverse functions ranging from vesicle formation to vesicle fusion and (iv) they act in GTPase cascades to regulate intracellular trafficking pathways. Our recent studies on Ypt1 and Ypt31/Ypt32 and their modular GEF complex TRAPP raise three exciting novel paradigms for Ypt/Rab function: (a) coordination of vesicular transport substeps, (b) integration of individual transport steps into pathways and (c) coordination of different transport pathways. In addition to its amenability to genetic analysis, yeast provides a superior model system for future studies on the role of Ypt/Rabs in traffic coordination due to the smaller proteome that results in a simpler traffic grid. We propose that different types of coordination are important also in human cells for fine-tuning of intracellular trafficking, and that coordination defects could result in disease.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Review
Authors
Lipatova Z, Hain AU, Nazarko VY, Segev N
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference