Reference: Hasunuma T, et al. (2014) Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses. Microb Cell Fact 13:145

Reference Help

Abstract


Background: Bioethanol produced by the yeast Saccharomyces cerevisiae is currently one of the most promising alternatives to conventional transport fuels. Lignocellulosic hemicelluloses obtained after hydrothermal pretreatment are important feedstock for bioethanol production. However, hemicellulosic materials cannot be directly fermented by yeast: xylan backbone of hemicelluloses must first be hydrolyzed by heterologous hemicellulases to release xylose, and the yeast must then ferment xylose in the presence of fermentation inhibitors generated during the pretreatment.

Results: A GIN11/FRT-based multiple-gene integration system was developed for introducing multiple functions into the recombinant S. cerevisiae strains engineered with the xylose metabolic pathway. Antibiotic markers were efficiently recycled by a novel counter selection strategy using galactose-induced expression of both FLP recombinase gene and GIN11 flanked by FLP recombinase recognition target (FRT) sequences. Nine genes were functionally expressed in an industrial diploid strain of S. cerevisiae: endoxylanase gene from Trichoderma reesei, xylosidase gene from Aspergillus oryzae, β-glucosidase gene from Aspergillus aculeatus, xylose reductase and xylitol dehydrogenase genes from Scheffersomyces stipitis, and XKS1, TAL1, FDH1 and ADH1 variant from S. cerevisiae. The genes were introduced using the homozygous integration system and afforded hemicellulolytic, xylose-assimilating and inhibitor-tolerant abilities to the strain. The engineered yeast strain demonstrated 2.7-fold higher ethanol titer from hemicellulosic material than a xylose-assimilating yeast strain. Furthermore, hemicellulolytic enzymes displayed on the yeast cell surface hydrolyzed hemicelluloses that were not hydrolyzed by a commercial enzyme, leading to increased sugar utilization for improved ethanol production.

Conclusions: The multifunctional yeast strain, developed using a GIN11/FRT-based marker recycling system, achieved direct conversion of hemicellulosic biomass to ethanol without the addition of exogenous hemicellulolytic enzymes. No detoxification processes were required. The multiple-gene integration technique is a powerful approach for introducing and improving the biomass fermentation ability of industrial diploid S. cerevisiae strains.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hasunuma T, Hori Y, Sakamoto T, Ochiai M, Hatanaka H, Kondo A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference