Reference: Jubin C, et al. (2014) Sequence profiling of the Saccharomyces cerevisiae genome permits deconvolution of unique and multialigned reads for variant detection. G3 (Bethesda) 4(4):707-15

Reference Help

Abstract


Advances in high-throughput sequencing (HTS) technologies have accelerated our knowledge of genomes in hundreds of organisms, but the presence of repetitions found in every genome raises challenges to unambiguously map short reads. In particular, short polymorphic reads that are multialigned hinder our capacity to detect mutations. Here, we present two complementary bioinformatics strategies to perform more robust analyses of genome content and sequencing data, validated by use of the Saccharomyces cerevisiae fully sequenced genome. First, we created an annotated HTS profile for the reference genome, based on the production of virtual HTS reads. Using variable read lengths and different numbers of mismatches, we found that 35 nt-reads, with a maximum of 6 mismatches, targets 89.5% of the genome to unique (U) regions. Longer reads consisting of 50-100 nt provided little additional benefits on the U regions extent. Second, to analyze the remaining multialigned (M) regions, we identified the intragenomic single-nucleotide variants and thus defined the unique (MU) and multialigned (MM) subregions, as exemplified for the polymorphic copies of the six flocculation genes and the 50 Ty retrotransposons. As a resource, the coordinates of the U and M regions of the yeast genome have been added to the Saccharomyces Genome Database (www.yeastgenome.org). The benefit of this advanced method of genome annotation was confirmed by our ability to identify acquired single nucleotide polymorphisms in the U and M regions of an experimentally sequenced variant wild-type yeast strain.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Jubin C, Serero A, Loeillet S, Barillot E, Nicolas A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference