Reference: Feiglin A, et al. (2014) Co-expression and co-localization of hub proteins and their partners are encoded in protein sequence. Mol Biosyst 10(4):787-94

Reference Help

Abstract


Spatiotemporal coordination is a critical factor in biological processes. Some hubs in protein-protein interaction networks tend to be co-expressed and co-localized with their partners more strongly than others, a difference which is arguably related to functional differences between the hubs. Based on numerous analyses of yeast hubs, it has been suggested that differences in co-expression and co-localization are reflected in the structural and molecular characteristics of the hubs. We hypothesized that if indeed differences in co-expression and co-localization are encoded in the molecular characteristics of the protein, it may be possible to predict the tendency for co-expression and co-localization of human hubs based on features learned from systematically characterized yeast hubs. Thus, we trained a prediction algorithm on hubs from yeast that were classified as either strongly or weakly co-expressed and co-localized with their partners, and applied the trained model to 800 human hub proteins. We found that the algorithm significantly distinguishes between human hubs that are co-expressed and co-localized with their partners and hubs that are not. The prediction is based on sequence derived features such as "stickiness", i.e. the existence of multiple putative binding sites that enable multiple simultaneous interactions, "plasticity", i.e. the existence of predicted structural disorder which conjecturally allows for multiple consecutive interactions with the same binding site and predicted subcellular localization. These results suggest that spatiotemporal dynamics is encoded, at least in part, in the amino acid sequence of the protein and that this encoding is similar in yeast and in human.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Feiglin A, Ashkenazi S, Schlessinger A, Rost B, Ofran Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference