Reference: Wang C, et al. (2014) Protective effects of ETC complex III and cytochrome c against hydrogen peroxide-induced apoptosis in yeast. Free Radic Res 48(4):435-44

Reference Help

Abstract


Abstract In mammals, the mitochondrial electron transfer components (ETC) complex III and cytochrome c (cyt c) play essential roles in reactive oxygen species (ROS)-induced apoptosis. However, in yeast, the functions of cyt c and other ETC components remain unclear. In this study, three ETC-defective yeast mutants qcr7?, cyc1?cyc7?, and cox12?, lacking cyt c oxidoreductase (complex III), cyt c, and cyt c oxidase (complex IV), respectively, were used to test the roles of these proteins in the response of cells to hydrogen peroxide (H2O2). Mutants qcr7? and cyc1?cyc7? displayed greater H2O2 sensitivity than the wild-type or cox12? mutant. Consistent with this, qcr7? and cyc1?cyc7? produced higher ROS levels, displayed derepressed expression of the proapoptotic genes AIF1, NUC1, and NMA111, but not YCA1, at the mRNA level, and were more vulnerable to H2O2-induced apoptosis. Interestingly, mutants lacking these proapoptotic genes displayed enhanced H2O2 tolerance, but unaffected ROS accumulation. Furthermore, the overexpression of antiapoptotic genes (Bcl-2, Ced-9, AtBI-1, and PpBI-1) reduced the levels of AIF1, NUC1, and NMA111 mRNAs, and reduced H2O2-induced cell death. Our findings identify two ETC components as early-inhibitory members of the ROS-mediated apoptotic pathway, suggesting their essential roles in metabolizing H2O2, probably by providing reduced cyt c, allowing cyt c peroxidase to remove H2O2 from the cells.

Reference Type
Journal Article
Authors
Wang C, Li X, Wang M, Qian J, Zheng K, Han N, Bian H, Wang J, Pan J, Zhu M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference