Reference: Nowrousian M (2013) Fungal gene expression levels do not display a common mode of distribution. BMC Res Notes 6:559

Reference Help

Abstract


Background: RNA-seq studies in metazoa have revealed a distinct, double-peaked (bimodal) distribution of gene expression independent of species and cell type. However, two studies in filamentous fungi yielded conflicting results, with a bimodal distribution in Pyronema confluens and varying distributions in Sordaria macrospora. To obtain a broader overview of global gene expression distributions in fungi, an additional 60 publicly available RNA-seq data sets from six ascomycetes and one basidiomycete were analyzed with respect to gene expression distributions.

Results: Clustering of normalized, log2-transformed gene expression levels for each RNA-seq data set yielded distributions with one to five peaks. When only major peaks comprising at least 15% of all analyzed genes were considered, distributions ranged from one to three major peaks, suggesting that fungal gene expression is not generally bimodal. The number of peaks was not correlated with the phylogenetic position of a species; however, higher filamentous asco- and basidiomycetes showed up to three major peaks, whereas gene expression levels in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe had only one to two major peaks, with one predominant peak containing at least 70% of all expressed genes. In several species, the number of peaks varied even within a single species, e.g. depending on the growth conditions as evidenced in the one to three major peaks in different samples from Neurospora crassa. Earlier studies based on microarray and SAGE data revealed distributions of gene expression level that followed Zipf's law, i.e. log-transformed gene expression levels were inversely proportional to the log-transformed expression rank of a gene. However, analyses of the fungal RNA-seq data sets could not identify any that confirmed to Zipf's law.

Conclusions: Fungal gene expression patterns cannot generally be described by a single type of distribution (bimodal or Zipf's law). One hypothesis to explain this finding might be that gene expression in fungi is highly dynamic, and fine-tuned at the level of transcription not only for individual genes, but also at a global level.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Nowrousian M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference