Reference: Gagnon-Arsenault I, et al. (2013) Transcriptional divergence plays a role in the rewiring of protein interaction networks after gene duplication. J Proteomics 81:112-25

Reference Help

Abstract


Gene duplication plays a key role in the evolution of protein-protein interaction (PPI) networks. After a gene duplication event, paralogous proteins may diverge through the gain and loss of PPIs. This divergence can be explained by two non-exclusive mechanisms. First, mutations may accumulate in the coding sequences of the paralogs and affect their protein sequences, which can modify, for instance, their binding interfaces and thus their interaction specificity. Second, mutations may accumulate in the non-coding region of the genes and affect their regulatory sequences. The resulting changes in expression profiles can lead to paralogous proteins being differentially expressed and occurring in the cell with different sets of potential interaction partners. These changes could also alter splicing regulation and lead to the inclusion or exclusion of alternative exons. The evolutionary role of these regulatory mechanisms remains largely unexplored. We use bioinformatics analyses of existing PPI data and proteome-wide PPI screening to show that the divergence of transcriptional regulation between paralogs plays a significant role in determining their PPI specificity. Because many gene duplication events are followed by rapid changes in transcriptional regulation, our results suggest that PPI networks may be rewired by gene duplication, without the need for protein to diverge in their binding specificities. This article is part of a Special Issue entitled: From protein structures to clinical applications.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gagnon-Arsenault I, Marois Blanchet FC, Rochette S, Diss G, Dubé AK, Landry CR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference