Reference: Mo F, et al. (2013) Effects of Nitrogen Composition on Fermentation Performance of Brewer's Yeast and the Absorption of Peptides with Different Molecular Weights. Appl Biochem Biotechnol 171(6):1339-50

Reference Help

Abstract


Four kinds of worts with different nitrogen compositions were used to examine their effects on fermentation performance of brewer's yeast. The absorption pattern of peptides with different molecular weights (Mw) in yeast cells during wort fermentation was also investigated. Results showed that both the nitrogen composition and level had significant impacts on the yeast biomass accumulation, ethanol production, and free amino nitrogen and sugars consumption rates. Worts supplemented with wheat gluten hydrolysates increased 11.5% of the biomass, 5.9% of fermentability, and 0.6% of ethanol content and decreased 25.6% of residual sugar content during wort fermentation. Moreover, yeast cells assimilated peptides with various Mw differently during fermentation. Peptides with Mw below 1 kDa decreased quickly, and the rate of assimilation was more than 50% at the end of fermentation, while those with Mw above 10 kDa almost could not be assimilated by yeast. All these results further indicated that the level and composition of wort nitrogen had significant impacts on the growth and fermentation performances of brewer's yeast, and peptides with Mw below 1 kDa were one of preferred nitrogen sources for brewer's yeast.

Reference Type
Journal Article
Authors
Mo F, Zhao H, Lei H, Zhao M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference