Reference: Gijsbers A, et al. (2013) Guanine nucleotide exchange in the ribosomal GTPase EFL1 is modulated by the protein mutated in the Shwachman-Diamond Syndrome. Biochem Biophys Res Commun 437(3):349-54

Reference Help

Abstract


Ribosome biogenesis in eukaryotes is a complex process that requires the participation of several accessory proteins that are not part of the mature particle. Efl1 is a yeast GTPase required for the cytoplasmic maturation of the 60S ribosomal subunit. Together with Sdo1, the yeast ortholog of the protein mutated in the Shwachman-Diamond Syndrome (SBDS), Efl1 releases the anti-association factor Tif6 from the surface of the 60S subunit allowing the assembly of mature ribosomes. We characterized the structural content and folding stability of the Saccharomyces cerevisiae and human EFL1 GTPases, as well as their enzymatic properties alone and in the presence of Sdo1 and SBDS, respectively. The human and S. cerevisiae EFL1 GTPases are composed of a mixture of a-helices and ?-sheets. Despite being orthologs, the yeast protein elicited a non-two state thermal unfolding behavior while the human EFL1 was highly resistant to thermal denaturation. Steady-state kinetic analyses indicated slow GTP hydrolysis for both EFL1 GTPases, with kcat values of 0.4 and 0.3min(-1) and Km for GTP of 110 and 180?M respectively. In the presence of the effector proteins, their kcat values remained unaltered while the Km decreased twofold suggesting that Sdo1 and SBDS act as nucleotide exchange factors.

Reference Type
Journal Article
Authors
Gijsbers A, Garcia-Marquez A, Luviano A, Sanchez-Puig N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference