Take our Survey

Reference: Ying SH, et al. (2013) A carbon responsive G-protein coupled receptor modulates broad developmental and genetic networks in the entomopathogenic fungus, Beauveria bassiana. Environ Microbiol

Reference Help

Abstract


In fungi, G-protein coupled receptors (GPCRs) link ligand/nutrient sensing to growth, mating, developmental/life-stage activation and pathogenesis. A GPCR was characterized from the entomopathogenic fungus, Beauveria bassiana (BbGPCR3), which links nutrient sensing to stress response and development. DeltaBbGPCR3 mutants grew slower on various carbohydrates and displayed increased sensitivity to osmotic, oxidative and cell wall stresses. Gene expression profiling revealed a set of heat-shock and antioxidant factors that failed to be induced under oxidative stress and aberrant regulation of compatible solute-forming enzymes and cell wall biosynthesis/remodelling proteins in DeltaBbGPCR3 after osmotic stress. Glucose-specific developmental defects included reduced (> 90%) conidiation and reduced dimorphic transition to the production of yeast-like blastospores, effects suppressed in media containing trehalose or glycerol, but not by addition of cyclic AMP. Insect bioassays revealed reduced virulence in topical assays but no effect in intrahaemoceol injection assays, indicating that BbGPCR3 was important in sensing signals during the initial interaction with the host but dispensable for post-penetration events. Comparative gene expression profiling of DeltaBbGPCR3 mutants grown in glucose media compared with wild-type/glucose and DeltaBbGPCR3/trehalose grown cells revealed sets of genes misregulated and recovered, respectively. These data link BbGPCR3 to broad developmental and genetic networks that include the major MAP kinase pathways.

Reference Type
Journal Article
Authors
Ying SH, Feng MG, Keyhani NO
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference