Reference: Chung AL, et al. (2013) Production of medium-chain-length 3-hydroxyalkanoic acids by ?-oxidation and phaC operon deleted Pseudomonas entomophila harboring thioesterase gene. Metab Eng 17:23-9

Reference Help

Abstract


3-Hydroxyalkanoic acids (3HA) are precious precursors for synthesis of value added chemicals. According to their carbon chain lengths, 3HA can be divided into two groups: short-chain-length (SCL) 3HA consisting of 3-5 carbon atoms and medium-chain-length (MCL) 3HA containing 6-14 carbon atoms. To produce MCL 3HA, a metabolic engineered pathway expressing tesB gene, a thioesterase encoding gene that has been reported to catalyze acyl-CoA to free fatty acids, was constructed in Pseudomonas entomophila L48. When tesB of Escherichia coli encoding thioesterase II was introduced into polyhydroxyalkanoate (PHA) synthase and ?-oxidation pathway deleted mutant of P. entomophila LAC31 derived from wild type P. entomophila L48, 6.65g/l 3-hydroxytetradecanoic acid (3HTD) and 4.6g/l 3-hydroxydodecanoic acid (3HDD) were obtained, respectively, when tetradecanoic acid or dodecanoic acid as related carbon sources was added in shake flask cultures. Moreover, 1.8g/l of 3-hydroxydecanoic (3HD) acid was also produced by P. entomophila LAC31 harboring PTE1 gene cloned from Saccharomyces cerevisiae using corresponding fatty acid decanoic acid. Interestingly, shake flask studies indicated that PTE1 harboring strain showed advantages over tesB expressing one for 3HDD and 3HD production, while tesB favored 3HTD production by P. entomophila LAC31. For the first time our study revealed that fine chemicals 3HTD, 3HDD or 3HD could be efficiently produced by metabolic engineered ?-oxidation in Pseudomonas spp grown on related fatty acids.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chung AL, Zeng GD, Jin HL, Wu Q, Chen JC, Chen GQ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference