Reference: Bao E, et al. (2013) BRANCH: boosting RNA-Seq assemblies with partial or related genomic sequences. Bioinformatics 29(10):1250-9

Reference Help

Abstract


Motivation: De novo transcriptome assemblies of RNA-Seq data are important for genomics applications of unsequenced organisms. Owing to the complexity and often incomplete representation of transcripts in sequencing libraries, the assembly of high-quality transcriptomes can be challenging. However, with the rapidly growing number of sequenced genomes, it is now feasible to improve RNA-Seq assemblies by guiding them with genomic sequences.

Results: This study introduces BRANCH, an algorithm designed for improving de novo transcriptome assemblies by using genomic information that can be partial or complete genome sequences from the same or a related organism. Its input includes assembled RNA reads (transfrags), genomic sequences (e.g. contigs) and the RNA reads themselves. It uses a customized version of BLAT to align the transfrags and RNA reads to the genomic sequences. After identifying exons from the alignments, it defines a directed acyclic graph and maps the transfrags to paths on the graph. It then joins and extends the transfrags by applying an algorithm that solves a combinatorial optimization problem, called the Minimum weight Minimum Path Cover with given Paths. In performance tests on real data from Caenorhabditis elegans and Saccharomyces cerevisiae, assisted by genomic contigs from the same species, BRANCH improved the sensitivity and precision of transfrags generated by Velvet/Oases or Trinity by 5.1-56.7% and 0.3-10.5%, respectively. These improvements added 3.8-74.1% complete transcripts and 8.3-3.8% proteins to the initial assembly. Similar improvements were achieved when guiding the BRANCH processing of a transcriptome assembly from a more complex organism (mouse) with genomic sequences from a related species (rat).

Availability: The BRANCH software can be downloaded for free from this site: http://manuals.bioinformatics.ucr.edu/home/branch.

Contact: thomas.girke@ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Bao E, Jiang T, Girke T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference