Reference: Troppens DM, et al. (2013) Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res 13(3):322-34

Reference Help

Abstract

Saccharomyces cerevisiae is a proven model to investigate the effects of small molecules and drugs on fungal and eukaryotic cells. In this study, the mode of action of an antifungal metabolite, 2,4-diacetylphloroglucinol (DAPG), was determined. Applying a combination of genetic and physiological approaches, it was established that this bacterial metabolite acts as a proton ionophore and dissipates the proton gradient across the mitochondrial membrane. The uncoupling of respiration and ATP synthesis ultimately leads to growth inhibition and is the primary toxic effect of DAPG. A genome-wide screen identified 154 DAPG-tolerant mutants and showed that there are many alterations in cellular metabolism that can confer at least some degree of tolerance to this uncoupler. One mutant, ydc1, was studied in some more detail as it displayed increased tolerance to both DAPG and the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) and appears to be unconnected to other tolerant mutant strains. Deleting YDC1 alters sphingolipid homoeostasis in the cell, and we suggest here that this may be linked to reduced drug sensitivity. Sphingolipids and their derivatives are important eukaryotic signal molecules, and the observation that altering homoeostasis may affect yeast response to metabolic uncoupling agents raises some intriguing questions for future studies.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Troppens DM, Dmitriev RI, Papkovsky DB, O'Gara F, Morrissey JP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference