Reference: Li Y, et al. (2013) Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano 7(3):2240-8

Reference Help

Abstract


Microbial cells have shown a great potential to biosynthesize inorganic nanoparticles within their orderly regulated intracellular environment. However, very little is known about the mechanism of nanoparticle biosynthesis. Therefore, it is difficult to control intracellular synthesis through the manipulation of biological processes. Here, we present a mechanism-oriented strategy for controlling the biosynthesis of fluorescent CdSe quantum dots (QDs) by means of metabolic engineering in yeast cells. Using genetic techniques, we demonstrated that the glutathione metabolic pathway controls the intracellular CdSe QD formation. Inspired from this mechanism, the controllability of CdSe QD yield was realized through engineering the glutathione metabolism in genetically modified yeast cells. The yeast cells were homogeneously transformed into more efficient cell-factories at the single-cell level, providing a specific way to direct the cellular metabolism toward CdSe QD formation. This work could provide the foundation for the future development of nanomaterial biosynthesis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Li Y, Cui R, Zhang P, Chen BB, Tian ZQ, Li L, Hu B, Pang DW, Xie ZX
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference