Take our Survey

Reference: Geromanos SJ, et al. (2012) Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples. Anal Bioanal Chem 404(4):1127-39

Reference Help

Abstract


To accurately determine the quantitative change of peptides and proteins in complex proteomics samples requires knowledge of how well each ion has been measured. The precision of each ions' calculated area is predicated on how uniquely it occupies its own space in m/z and elution time. Given an initial assumption that prior to the addition of the "heavy" label, all other ion detections are unique, which is arguably untrue, an initial attempt at quantifying the pervasiveness of ion interference events in a representative binary SILAC experiment was made by comparing the centered m/z and retention time of the ion detections from the "light" variant to its "heavy" companion. Ion interference rates were determined for LC-MS data acquired at mass resolving powers of 20 and 40 K with and without ion mobility separation activated. An ion interference event was recorded, if present in the companion dataset was an ion within +/- its Delta mass at half-height, +/-15 s of its apex retention time and if utilized by +/-1 drift bin. Data are presented illustrating a definitive decrease in the frequency of ion interference events with each additional increase in selectivity of the analytical workflow. Regardless of whether the quantitative experiment is a composite of labeled samples or label free, how well each ion is measured can be determined given knowledge of the instruments mass resolving power across the entire m/z scale and the ion detection algorithm reporting both the centered m/z and Delta mass at half-height for each detected ion. Given these measurements, an effective resolution can be calculated and compared with the expected instrument performance value providing a purity score for the calculated ions' area based on mass resolution. Similarly, chromatographic and drift purity scores can be calculated. In these instances, the error associated to an ions' calculated peak area is estimated by examining the variation in each measured width to that of their respective experimental median. Detail will be disclosed as to how a final ion purity score was established, providing a first measure of how accurately each ions' area was determined as well as how precise the calculated quantitative change between labeled or unlabelled pairs were determined. Presented is how common ion interference events are in quantitative proteomics LC-MS experiments and how ion purity filters can be utilized to overcome and address them, providing ultimately more accurate and precise quantification results across a wider dynamic range.

Reference Type
Journal Article
Authors
Geromanos SJ, Hughes C, Ciavarini S, Vissers JP, Langridge JI
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference