Reference: Coulombe-Huntington J and Xia Y (2012) Regulatory network structure as a dominant determinant of transcription factor evolutionary rate. PLoS Comput Biol 8(10):e1002734

Reference Help

Abstract


The evolution of transcriptional regulatory networks has thus far mostly been studied at the level of cis-regulatory elements. To gain a complete understanding of regulatory network evolution we must also study the evolutionary role of trans-factors, such as transcription factors (TFs). Here, we systematically assess genomic and network-level determinants of TF evolutionary rate in yeast, and how they compare to those of generic proteins, while carefully controlling for differences of the TF protein set, such as expression level. We found significantly distinct trends relating TF evolutionary rate to mRNA expression level, codon adaptation index, the evolutionary rate of physical interaction partners, and, confirming previous reports, to protein-protein interaction degree and regulatory in-degree. We discovered that for TFs, the dominant determinants of evolutionary rate lie in the structure of the regulatory network, such as the median evolutionary rate of target genes and the fraction of species-specific target genes. Decomposing the regulatory network by edge sign, we found that this modular evolution of TFs and their targets is limited to activating regulatory relationships. We show that fast evolving TFs tend to regulate other TFs and niche-specific processes and that their targets show larger evolutionary expression changes than targets of other TFs. We also show that the positive trend relating TF regulatory in-degree and evolutionary rate is likely related to the species-specificity of the transcriptional regulation modules. Finally, we discuss likely causes for TFs' different evolutionary relationship to the physical interaction network, such as the prevalence of transient interactions in the TF subnetwork. This work suggests that positive and negative regulatory networks follow very different evolutionary rules, and that transcription factor evolution is best understood at a network- or systems-level.

Reference Type
Journal Article
Authors
Coulombe-Huntington J, Xia Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference