Take our Survey

Reference: Styger G, et al. (2013) Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(10):4429-42

Reference Help

Abstract


During alcoholic fermentation, higher alcohols, esters, and acids are formed from amino acids via the Ehrlich pathway by yeast, but many of the genes encoding the enzymes have not yet been identified. When the BAT1/2 genes, encoding transaminases that deaminate amino acids in the first step of the Ehrlich pathway are deleted, higher metabolite formation is significantly decreased. Screening yeast strains with deletions of genes encoding decarboxylases, dehydrogenases, and reductases revealed nine genes whose absence had the most significant impact on higher alcohol production. The seven most promising genes (AAD6, BAT2, HOM2, PAD1, PRO2, SPE1, and THI3) were further investigated by constructing double- and triple-deletion mutants. All double-deletion strains showed a greater decrease in isobutanol, isoamyl alcohol, isobutyric, and isovaleric acid production than the corresponding single deletion strains with the double-deletion strains in combination with ?bat2 and the ?hom2-?aad6 strain revealing the greatest impact. BAT2 is the dominant gene in these deletion strains and this suggests the initial transaminase step of the Ehrlich pathway is rate-limiting. The triple-deletion strains in combination with BAT2 (?bat2-?thi3-?aad6 and ?bat2-?thi3-?hom2) had the greatest impact on the end metabolite production with the exception of isoamyl alcohol and isovaleric acid. The strain deleted for two dehydrogenases and a reductase (?hom2-?pro2-?aad6) had a greater effect on the levels of these two compounds. This study contributes to the elucidation of the Ehrlich pathway and its significance for aroma production by fermenting yeast cells.

Reference Type
Journal Article
Authors
Styger G, Jacobson D, Prior BA, Bauer FF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference