Reference: Zhai C, et al. (2014) The function of ORAOV1/LTO1, a gene that is overexpressed frequently in cancer: essential roles in the function and biogenesis of the ribosome. Oncogene 33(4):484-94

Reference Help

Abstract


ORAOV1 (oral cancer overexpressed) is overexpressed in many solid tumours, making a key contribution to the development of cancer, but the cellular role of ORAOV1 is unknown. The yeast orthologue of this protein is encoded by the hitherto uncharacterized essential gene, YNL260c. Expression of ORAOV1 restores viability to yeast cells lacking YNL260c. Under nonpermissive conditions, our conditional mutants of YNL260c are defective in the maturation of the 60S ribosomal subunit, whereas maturation of the 40S subunit is unaffected. Also, initiation of translation is abrogated when YNL260c function is lost. YNL260c is indispensible for life in oxygen, but is nonessential under anaerobic conditions. Consequently, the toxic affects of aerobic metabolism on biogenesis and function of the ribosome are alleviated by YNL260c, hence, we rename YNL260c as LTO1; required for biogenesis of the large ribosomal subunit and initiation of translation in oxygen. Lto1 is found in a complex with Rli1/ABCE1, an ATP-binding cassette (ABC)-ATPase bearing N-terminal [4Fe-4S] clusters. Like Lto1, the Rli1/ABCE1 [4Fe-4S] clusters are not required for viability under anaerobic conditions, but are essential in the presence of oxygen. Loss of Lto1 function renders cells susceptible to hydroperoxide pro-oxidants, though this type of sensitivity is specific to certain types of oxidative stress as the lto1 mutants are not sensitive to an agent that oxidizes thiols. These findings reflect a functional interaction between Lto1 and the Rli1/ABCE1 [4Fe-4S] clusters, as part of a complex, which relieves the toxic effects of reactive oxygen species (ROS) on biogenesis and function of the ribosome. This complex also includes Yae1, which bridges the interaction between Lto1 and Rli1/ABCE1. Interactions between members of this complex were demonstrated both in vivo and in vitro. An increased generation of ROS is a feature shared by many cancers. The ORAOV1 complex could prevent ROS-induced ribosomal damage, explaining why overexpression of ORAOV1 is so common in solid tumours.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhai C, Li Y, Mascarenhas C, Lin Q, Li K, Vyrides I, Grant CM, Panaretou B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference