Reference: Gomes F, et al. (2013) nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants. Biochem J 449(3):595-603

Reference Help

Abstract


Saccharomyces cerevisiae has three distinct inner mitochondrial membrane NADH dehydrogenases mediating the transfer of electrons from NADH to CoQ (coenzyme Q): Nde1p, Nde2p and Ndi1p. The active site of Ndi1p faces the matrix side, whereas the enzymatic activities of Nde1p and Nde2p are restricted to the intermembrane space side, where they are responsible for cytosolic NADH oxidation. In the present study we genetically manipulated yeast strains in order to alter the redox state of CoQ and NADH dehydrogenases to evaluate the consequences on mtDNA (mitochondrial DNA) maintenance. Interestingly, nde1 deletion was protective for mtDNA in strains defective in CoQ function. Additionally, the absence of functional Nde1p promoted a decrease in the rate of H2O2 release in isolated mitochondria from different yeast strains. On the other hand, overexpression of the predominant NADH dehydrogenase NDE1 elevated the rate of mtDNA loss and was toxic to coq10 and coq4 mutants. Increased CoQ synthesis through COQ8 overexpression also demonstrated that there is a correlation between CoQ respiratory function and mtDNA loss: supraphysiological CoQ levels were protective against mtDNA loss in the presence of oxidative imbalance generated by Nde1p excess or exogenous H2O2. Altogether, our results indicate that impairment in the oxidation of cytosolic NADH by Nde1p is deleterious towards mitochondrial biogenesis due to an increase in reactive oxygen species release.

Reference Type
Journal Article
Authors
Gomes F, Tahara EB, Busso C, Kowaltowski AJ, Barros MH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference