Reference: Nair U, et al. (2012) A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8(5):780-93

Reference Help

Abstract


Formation of the autophagosome is likely the most complex step of macroautophagy, and indeed it is the morphological and functional hallmark of this process; accordingly, it is critical to understand the corresponding molecular mechanism. Atg8 is the only known autophagy-related (Atg) protein required for autophagosome formation that remains associated with the completed sequestering vesicle. Approximately one-fourth of all of the characterized Atg proteins that participate in autophagosome biogenesis affect Atg8, regulating its conjugation to phosphatidylethanolamine (PE), localization to the phagophore assembly site and/or subsequent deconjugation. An unanswered question in the field regards the physiological role of the deconjugation of Atg8-PE. Using an Atg8 mutant that bypasses the initial Atg4-dependent processing, we demonstrate that Atg8 deconjugation is an important step required to facilitate multiple events during macroautophagy. The inability to deconjugate Atg8-PE results in the mislocalization of this protein to the vacuolar membrane. We also show that the deconjugation of Atg8-PE is required for efficient autophagosome biogenesis, the assembly of Atg9-containing tubulovesicular clusters into phagophores/autophagosomes, and for the disassembly of PAS-associated Atg components.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Nair U, Yen WL, Mari M, Cao Y, Xie Z, Baba M, Reggiori F, Klionsky DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference