Take our Survey

Reference: Lavina WA, et al. (2013) Functionally redundant protein phosphatase genes PTP2 and MSG5 co-regulate the calcium signaling pathway in Saccharomyces cerevisiae upon exposure to high extracellular calcium concentration. J Biosci Bioeng 115(2):138-46

Reference Help

Abstract

Reversible phosphorylation is one of the key post-translational modifications for the regulation of many essential cellular processes. We have previously reported that the disruption of two protein phosphatase (PPase) genes, PTP2 and MSG5, causes calcium sensitivity indicating that functional redundancy exists between the two PPases in response to high extracellular calcium. In this paper, we found that the inactivation of calcineurin by the disruption of the calcineurin regulatory subunit, CNB1 or treatment with a calcineurin inhibitor, FK506, can suppress the calcium-sensitive phenotype of the ptp2?msg5? double disruptant. In the wake of a calcium-induced, calcineurin-driven signaling pathway activation, the calcium sensitivity of the ptp2?msg5? double disruptant can be suppressed by regulating the SLT2 pathway through the disruption of the major kinases in the SLT2 signal cascade that include BCK1, MKK1 and SLT2. Also, we show that PTP2 and MSG5 are key regulatory PPases that prevent over-activation of the calcium-induced signaling cascade under the parallel control of the SLT2 and calcineurin pathways.

Reference Type
Journal Article
Authors
Lavina WA, Hermansyah, Sugiyama M, Kaneko Y, Harashima S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference