Reference: Alexandrov AI, et al. (2012) The effects of amino Acid composition of glutamine-rich domains on amyloid formation and fragmentation. PLoS One 7(10):e46458

Reference Help

Abstract


Fragmentation of amyloid polymers by the chaperone Hsp104 allows them to propagate as prions in yeast. The factors which determine the frequency of fragmentation are unclear, though it is often presumed to depend on the physical strength of prion polymers. Proteins with long polyglutamine stretches represent a tractable model for revealing sequence elements required for polymer fragmentation in yeast, since they form poorly fragmented amyloids. Here we show that interspersion of polyglutamine stretches with various amino acid residues differentially affects the in vivo formation and fragmentation of the respective amyloids. Aromatic residues tyrosine, tryptophan and phenylalanine strongly stimulated polymer fragmentation, leading to the appearance of oligomers as small as dimers. Alanine, methionine, cysteine, serine, threonine and histidine also enhanced fragmentation, while charged residues, proline, glycine and leucine inhibited polymerization. Our data indicate that fragmentation frequency primarily depends on the recognition of fragmentation-promoting residues by Hsp104 and/or its co-chaperones, rather than on the physical stability of polymers. This suggests that differential exposure of such residues to chaperones defines prion variant-specific differences in polymer fragmentation efficiency.

Reference Type
Journal Article
Authors
Alexandrov AI, Polyanskaya AB, Serpionov GV, Ter-Avanesyan MD, Kushnirov VV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference