Take our Survey

Reference: Barreto L, et al. (2012) The short-term response of yeast to potassium starvation. Environ Microbiol 14(11):3026-42

Reference Help

Abstract


Potassium is the major intracellular cation in most living cells, including yeasts. Although K(+) has been demonstrated to be necessary for diverse cellular functions, such as enzyme activation, additional, still uncharacterized cellular targets may exist. We show here that in Saccharomyces cerevisiae short-term potassium deprivation impacts in the mRNA level of over one thousand genes. Lack of potassium drastically alters sulfur metabolism (mainly Met and Cys metabolism), triggers an oxidative stress response and activates the retrograde pathway, possibly due to the ammonium accumulation that occurs through the Trk1 potassium transporter. We also observe a remarkable halt in the expression of genes required for ribosome biogenesis and translation, a decrease in expression of diverse components (cyclins, protein kinases) required for progression through the cell cycle and a blockage in septins assembly. Only specific subsets of these changes were observed in a strain deleted for the TRK1 and TRK2 genes growing in the presence of sufficient potassium (50?mM). Therefore, a shortage of potassium in the environment triggers an acute transcriptional response, which covers different aspects of the cell biology so far unexplored, and whose investigation will likely reveal novel functional roles for this cation.

Reference Type
Journal Article
Authors
Barreto L, Canadell D, Valverde-Saubi D, Casamayor A, Arino J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference