Reference: Duan D, et al. (2012) Neck rotation and neck mimic docking in the noncatalytic Kar3-associated protein Vik1. J Biol Chem 287(48):40292-301

Reference Help

Abstract


Background: Kar3Vik1 is a heterodimeric kinesin with one catalytic subunit (Kar3) and one noncatalytic subunit (Vik1).

Results: Vik1 experiences conformational changes in regions analogous to the force-producing elements in catalytic kinesins.

Conclusion: A molecular mechanism by which Kar3 could trigger Vik1's release from microtubules was revealed.

Significance: These findings will serve as the prototype for understanding the motile mechanism of kinesin-14 motors in general. It is widely accepted that movement of kinesin motor proteins is accomplished by coupling ATP binding, hydrolysis, and product release to conformational changes in the microtubule-binding and force-generating elements of their motor domain. Therefore, understanding how the Saccharomyces cerevisiae proteins Cik1 and Vik1 are able to function as direct participants in movement of Kar3Cik1 and Kar3Vik1 kinesin complexes presents an interesting challenge given that their motor homology domain (MHD) cannot bind ATP. Our crystal structures of the Vik1 ortholog from Candida glabrata may provide insight into this mechanism by showing that its neck and neck mimic-like element can adopt several different conformations reminiscent of those observed in catalytic kinesins. We found that when the neck is α-helical and interacting with the MHD core, the C terminus of CgVik1 docks onto the central β-sheet similarly to the ATP-bound form of Ncd. Alternatively, when neck-core interactions are broken, the C terminus is disordered. Mutations designed to impair neck rotation, or some of the neck-MHD interactions, decreased microtubule gliding velocity and steady state ATPase rate of CgKar3Vik1 complexes significantly. These results strongly suggest that neck rotation and neck mimic docking in Vik1 and Cik1 may be a structural mechanism for communication with Kar3.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Duan D, Jia Z, Joshi M, Brunton J, Chan M, Drew D, Davis D, Allingham JS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference