Take our Survey

Reference: Sanna D, et al. (2012) Application of DFT methods to the study of the coordination environment of the VO2+ ion in V proteins. J Biol Inorg Chem 17(5):773-90

Reference Help

Abstract

Density functional theory (DFT) methods were used to simulate the environment of vanadium in several V proteins, such as vanadyl-substituted carboxypeptidase (sites A and B), vanadyl-substituted chloroplast F(1)-ATPase (CF(1); site 3), the reduced inactive form of vanadium bromoperoxidase (VBrPO; low- and high-pH sites), and vanadyl-substituted imidazole glycerol phosphate dehydratase (IGPD; sites alpha, beta, and gamma). Structural, electron paramagnetic resonance, and electron spin echo envelope modulation parameters were calculated and compared with the experimental values. All the simulations were performed in water within the framework of the polarizable continuum model. The angular dependence of [Formula: see text] and [Formula: see text] on the dihedral angle theta between the V=O and N-C bonds and on the angle phi between the V=O and V-N bonds, where N is the coordinated aromatic nitrogen atom, was also found. From the results it emerges that it is possible to model the active site of a vanadium protein through DFT methods and determine its structure through the comparison between the calculated and experimental spectroscopic parameters. The calculations confirm that the donor sets of sites B and A of vanadyl-substituted carboxypeptidase are [[Formula: see text], H(2)O, H(2)O, H(2)O] and [N(His)(||), N(His)( perpendicular), [Formula: see text], H(2)O], and that the donor set of site 3 of CF(1)-ATPase is [[Formula: see text], OH(Thr), H(2)O, H(2)O, [Formula: see text]]. For VBrPO, the coordination modes [N(His)(||), N(His)( angle), OH(Ser), H(2)O, H(2)O(ax)] for the low-pH site and [N(His)(||), N(His)( angle), OH(Ser), OH(-), H(2)O(ax)] or [N(His)(||), N(His)( angle), [Formula: see text], H(2)O] for the high-pH site, with an imidazole ring of histidine strongly displaced from the equatorial plane, can be proposed. Finally, for sites alpha, beta, and gamma of IGPD, the subsequent deprotonation of one, two, and three imidazole rings of histidine and the participation of a carboxylate group of a glutamate residue ([N(His)(||), [Formula: see text], H(2)O, H(2)O], [N(His)(||), N(His)(||), [Formula: see text], H(2)O], and [N(His)(||), N(His)(||), [Formula: see text], OH(-), [Formula: see text]], respectively) seems to be the most plausible hypothesis.

Reference Type
Journal Article
Authors
Sanna D, Pecoraro VL, Micera G, Garribba E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference