Reference: Qi J and Michoel T (2012) Context-specific transcriptional regulatory network inference from global gene expression maps using double two-way t-tests. Bioinformatics 28(18):2325-32

Reference Help

Abstract


Motivation: Transcriptional regulatory network inference methods have been studied for years. Most of them rely on complex mathematical and algorithmic concepts, making them hard to adapt, re-implement or integrate with other methods. To address this problem, we introduce a novel method based on a minimal statistical model for observing transcriptional regulatory interactions in noisy expression data, which is conceptually simple, easy to implement and integrate in any statistical software environment and equally well performing as existing methods.

Results: We developed a method to infer regulatory interactions based on a model where transcription factors (TFs) and their targets are both differentially expressed in a gene-specific, critical sample contrast, as measured by repeated two-way t-tests. Benchmarking on standard Escherichia coli and yeast reference datasets showed that this method performs equally well as the best existing methods. Analysis of the predicted interactions suggested that it works best to infer context-specific TF-target interactions which only co-express locally. We confirmed this hypothesis on a dataset of >1000 normal human tissue samples, where we found that our method predicts highly tissue-specific and functionally relevant interactions, whereas a global co-expression method only associates general TFs to non-specific biological processes.

Availability: A software tool called TwixTrix is available from http://twixtrix.googlecode.com.

Supplementary information: Supplementary Material is available from http://www.roslin.ed.ac.uk/tom-michoel/supplementary-data.

Contact: tom.michoel@roslin.ed.ac.uk.

Reference Type
Journal Article
Authors
Qi J, Michoel T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference