Reference: Urquiza JM, et al. (2012) Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for PPI classification. Comput Biol Med 42(6):639-50

Reference Help

Abstract


In modern proteomics, prediction of protein-protein interactions (PPIs) is a key research line, as these interactions take part in most essential biological processes. In this paper, a new approach is proposed to PPI data classification based on the extraction of genomic and proteomic information from well-known databases and the incorporation of semantic measures. This approach is carried out through the application of data mining techniques and provides very accurate models with high levels of sensitivity and specificity in the classification of PPIs. The well-known support vector machine paradigm is used to learn the models, which will also return a new confidence score which may help expert researchers to filter out and validate new external PPIs. One of the most-widely analyzed organisms, yeast, will be studied. We processed a very high-confidence dataset by extracting up to 26 specific features obtained from the chosen databases, half of them calculated using two new similarity measures proposed in this paper. Then, by applying a filter-wrapper algorithm for feature selection, we obtained a final set composed of the eight most relevant features for predicting PPIs, which was validated by a ROC analysis. The prediction capability of the support vector machine model using these eight features was tested through the evaluation of the predictions obtained in a set of external experimental, computational, and literature-collected datasets.CI - Copyright (c) 2012 Elsevier Ltd. All rights reserved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Urquiza JM, Rojas I, Pomares H, Herrera J, Florido JP, Valenzuela O, Cepero M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference