Take our Survey

Reference: Todorova T, et al. (2012) Mutagenic effect of freezing on nuclear DNA of Saccharomyces cerevisiae. Yeast 29(5):191-9

Reference Help

Abstract


Although fragmentation of DNA has been observed in cells undergoing freezing procedures, a mutagenic effect of sub-zero temperature treatment has not been proved by induction and isolation of mutants in nuclear DNA (nDNA). In this communication we supply evidence for mutagenicity of freezing on nDNA of Saccharomyces cerevisiae cells. In the absence of cryoprotectors, cooling for 2 h at +4 degrees C and freezing for 1 h at -10 degrees C and 16 h at -20 degrees C, with a cooling rate of 3 degrees C/min, resulted in induction of frame-shift and reverse mutations in microsatellite and coding regions of nDNA. The sub-zero temperature exposure also has a strong recombinogenic effect, evidenced by induction of gene-conversion and crossing-over events. Freezing induces mutations and enhances recombination with a frequency equal to or higher than that of methylmethanesulphonate at comparable survival rates. The signals for the appearance of nDNA lesions induced by freezing are detected and transduced by the DNA damage pathway. Extracellular cryoprotectors did not prevent the mutagenic effect of freezing, while accumulation of trehalose inside cells reduced nDNA cryodamage. Freezing of cells is accompanied by generation of high ROS levels, and the oxidative stress raised during the freeze-thaw process is the most likely reason for the DNA damaging effect. Experiments with mitochondrial rho(-) mutants or scavengers of ROS indicated that mutagenic and recombinogenic effects of sub-zero temperatures can be decreased but not eliminated by reduction of ROS level. The complete protection against cryodamage in nDNA required simultaneous usage of intracellular cryoprotector and ROS scavenger during the freeze-thaw process.CI - Copyright (c) 2012 John Wiley & Sons, Ltd.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Todorova T, Pesheva M, Stamenova R, Dimitrov M, Venkov P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference