Reference: Auesukaree C, et al. (2012) Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. J Biosci Bioeng 114(2):144-9

Reference Help

Abstract


For industrial applications, fermentation of ethanol at high temperature offers advantages such as reduction in cooling costs, reduced risk of microbial contamination and higher efficiency of fermentation processes including saccharification and continuous ethanol stripping. Three thermotolerant Saccharomyces cerevisiae isolates (C3723, C3751 and C3867) from Thai fruits were capable of growing and producing 38 g/L ethanol up to 41 degrees C. Based on genetic analyses, these isolates were prototrophic and homothallic, with dominant homothallic and thermotolerant phenotypes. After short-term (30 min) and long-term (12 h) exposure at 37 degrees C, expression levels increased for the heat stress-response genes HSP26, SSA4, HSP82, and HSP104 encoding the heat shock proteins small HSP, HSP70, HSP90 and the HSP100 family, respectively. In isolates C3723 and C3867, expression was significantly higher than that in reference isolates W303 and TISTR5606 for TPS1 encoding trehalose-6-phosphate synthase, NTH1 encoding neutral trehalase and GSY1 encoding glycogen synthase. The results suggested that continuous high expression of heat stress-response genes was important for the long-term, heat stress tolerance of these thermotolerant isolates.CI - Copyright (c) 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Auesukaree C, Koedrith P, Saenpayavai P, Asvarak T, Benjaphokee S, Sugiyama M, Kaneko Y, Harashima S, Boonchird C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference