Take our Survey

Reference: Yang Z and Sankoff D (2012) Generalized adjacency and the conservation of gene clusters in genetic networks defined by synthetic lethals. BMC Bioinformatics 13 Suppl 9:S8

Reference Help

Abstract

BACKGROUND: Given genetic networks derived from two genomes, it may be difficult to decide if their local structures are similar enough in both genomes to infer some ancestral configuration or some conserved functional relationships. Current methods all depend on searching for identical substructures. METHODS: We explore a generalized vertex proximity criterion, and present analytic and probability results for the comparison of random lattice networks. RESULTS: We apply this criterion to the comparison of the genetic networks of two evolutionarily divergent yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, derived using the Synthetic Genetic Array screen. We show that the overlapping parts of the networks of the two yeasts share a common structure beyond the shared edges. This may be due to their conservation of redundant pathways containing many synthetic lethal pairs of genes. CONCLUSIONS: Detecting the shared generalized adjacency clusters in the genetic networks of the two yeasts show that this analytical construct can be a useful tool in probing conserved network structure across divergent genomes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Yang Z, Sankoff D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference